

HANDBOOK IN
MOLECULAR MODELING

Developed by and based on the work iGEM Stockholm 2018, this
handbook serves the simple purpose of providing future iGEM

teams with the possibility to perform molecular modelling in order
to understand more about their experimental system using the

most sophisticated methods to date.

2

Preface

Hello and welcome to the handbook in molecular modelling! My
name is Darko Mitrovic, and I am the author of this modest
handbook. In the project of iGEM Stockholm 2018, the details of
which you can see on our wiki, we attempted to develop an enzyme
for a substrate using molecular modelling techniques. Due to the
poor documentation of overall methods and why different steps are
performed, we decided to make our own guide in how to do
different types of molecular modelling. We hope that this handbook
will provide enough of a basis for a reader of a synthetic biology
background to perform their own modelling to provide a theoretical
underline for the experimental work. We aim to introduce and
spread these methods to be used within iGEM to fulfill the
modelling goals and make modelling more accessible to teams who
have never had experience in modelling.

Good luck!

Darko Mitrovic | iGEM Stockholm 2018

3

Contents

1. Introduction………………………………………….4

2. Installing AMBER…………………………………...8

3. The PDB file format………………………………..17

4. Chimera……………………………………………...20

5. Avogadro…………………………………………….23

6. Frcmod and mol2…………………………………..27

7. Antechamber and Gaff……………………………29

8. LEaP………………………………………………….33

9. MD using Sander…………………………………..37

10. Analysis…………………………………………...47

11. VMD……………………………………………......51

12. QM in GAMESS…………………………………..59

13. AMBER QM/MM………………………………….74

4

HANDBOOK IN MOLECULAR MODELLING

Welcome to the Handbook in molecular modelling! This is a handbook
composed by iGEM Stockholm 2018, and can serve as a handy guide to
anyone who is new to and want to explore the vast world of molecular
modelling. Throughout this book, the flowchart above will guide you
and show you how to go about doing (1) Molecular Dynamics
simulations, (2) Quantum Mechanical calculations and (3) Quantum
Mechanical and Molecular Mechanics simulations, to model and better
understand your experimental system. There are no required
prerequisite skills, other than an open mindset and a working
computer!

5

Abstract

The role of enzymes in biological and chemical systems is to catalyze reactions, i.e.
speed up a chemical reaction. The potential usage of many enzymes is hindered by low
activity, specificity or other parameters that make them less efficient in industrial or biological
processes. Therefore, the implications of systematically improving an enzyme for faster
catalysis or less promiscuity are limitless.

Rational enzyme design is a developing and insightful method to gain knowledge and
potentially very substantial results in enzyme or protein engineering approaches. It is much
more cost-effective and resourceful than the many random mutagenesis approaches that are
readily used by experimentalists. Within iGEM, with limited time and especially resources, it
is very useful to integrate modelling with the project extensively. To do this, several different
methods can be used to garner more understanding in productive binding modes, structural
anomalies, steric clashes or other molecular mechanics related issues. These methods
require a plethora of software and quite a bit of know-how to produce reliable and
meaningful results, so attempting this should be done with caution.

This “user manual” is directed towards overgraduate students that have some
background in molecular mechanics or chemical equilibria problem. A good basic chemical
intuition is highly recommended, as well as a good experience of biomolecules (structural
biology) and biochemistry, especially if you are trying to model enzyme kinetics or even
chemical reactions.

In short, rational enzyme design is a new, powerful tool that we think should be
implemented in the iGEM competition at a bigger scale, to stress the importance of
understanding your system on a molecular level, and seeing how those results correlate with
the experimental results. It is a good and now easy way to elevate your iGEM project to a
point where you have a complete theoretical and practical picture of your project.

How to evolve proteins

There are several ways of achieving the same goal - in this instance it is to evolve a
new construct through mutations, but the methods differ in how “rational” they are, or how
much our understanding of the system contributes to which mutations we in the end choose
to make. As you can see, the least rational approaches of all human-made developments in
protein/enzyme engineering is directed evolution (certainly actual evolution is the least
rational approach (and most uncontrollable)). The more rational we become, the more we
simplify the problem to an isolated, controllable system.

As we will see in a bit, even though many more parameters are taken into account in
less controlled approaches, such as random mutagenesis, it can sometimes result that those
other parameters than your protein of interest are developed instead. An example of this can
be found in directed evolution, where if you apply a genetic drive on the system - introduce
an antibiotic, for example - the host organism will find the best solution to the problem - not
necessarily an improvement of your enzyme that you thought could be developed to degrade
the antibiotic. It may already have a gene for an efflux pump, and evolution will drive it to that
solution instead. This often happens if the original wild type protein is too far from the final,
optimized mutant. Of course, you only discover this after months of expression and

6

characterization.

Directed evolution is where one presents conditions under which wanted traits
increase the survival rate of the organism producing the product, and thus, a genetic drive
towards the wanted product is formed. Coupled with an induced higher mutational
frequency, this is a powerful tool to drive a wanted development in a natural system.

Many semi-rational approaches focus on statistical analysis or bioinformatics to get a
good guess about where to place the mutations, not why to place them on those locations,
and certainly not to which residue it should be mutated. An example of this is Saturation
mutagenesis, which can be done coupled with a generation analysis for great efficiency.
Through generation analysis, one can look at similar enzymes within a class of organisms to,
on a ​sequence​, not a structure level, classify which regions of the sequence are
hypervariable, highly conserved and variable throughout the ensemble. The hypervariable
regions are often not of interest, and usually differ in the folding of random coils. The highly
conserved regions on the other end of the spectra are highly conserved for a reason - the
mutants that have mutations here have been deemed unfavorable by evolution. It is often in
the variable regions that the most useful mutations can be introduced without disrupting
activity, and possibly improving it. In saturation mutagenesis, you simply introduce
completely or somewhat random mutations at selected (variable) sites in the sequence, and
then screen or select for the most successful mutants.

Why rational enzyme design?

For rational enzyme design, we are often trying to understand the process which we
mean to improve. It is therefore, naturally, the most logical approach to a problem.
Theoretically, if we have full control and full understand. Practically, it is about approximating
the system so that the error is minimized and the model system has the same parameters as
the real system. This is important, since there is no fundamental flaw with rational enzyme
design - it is theoretically consistent - however, the error arises from the models. If we did no
approximations, then, we would have full control over the evolution of our system. Of course,
we need to close off, isolate, reduce and use approximative models to get the parameters of
interest. Therefore, in theory, rational enzyme design can be developed to be extremely
accurate in the future, while both directed evolution and saturation mutagenesis have
reached their limit of accuracy and effectiveness, and the problems presented in the
previous section are inherent to the methods.

Secondly, all experimental work is very costly compared to modelling the system
prior to testing. The costs and time for reagents, knowledge gathering, protocol optimization

7

and equipment needed are very much larger than the computational costs. Of course it does
take time to learn; however, the purpose of this user’s manual is to alleviate future iGEM
teams timewise and aid them in their modelling.

Method
The methods presented here are some of the most exact methods or approaches to

rational enzyme design that exist to date. We apply all from classical to quantum mechanical
approaches, including a QM/MM simulation (puts a quantum mechanical region of interest
into a classically modelled environment). We aim to make the process of understanding your
system as straightforward as possible. There are several depths to the modelling applied to
solving a problem (1st row) using the methods (1st column), as you can see in the table:

 Optimization
of Thermal
stability

Optimization of
Protein structure
(e.g. folding)

Affinity/free
energy of
association

Enzyme catalysis
(nuclear geometry
change)

Expected
Absorbance
spectrum

Enzyme
catalysis of
electron transfer

Generation
analysis

Crystal
structure
analysis

MD
relaxation

MD
simulation

QM/MM
simulation

QM
geometry
optimization

QM reaction
coordinate
scan

QM saddle
point
calculation

QM TDDFT
(excitation)

QM
Electron
transfer

8

INSTALLING AMBER

Throughout this handbook, AMBER, or ambertools, will be used as the main
software for both QM/MM and MD simulations, and we will see how to use it
in future chapters (different functionalities include LEaP, Antechamber and
GAFF, and of course sander for the actual MD simulation). It contains the
latest rendition of the Amber force fields, (ff14sb as of 2018), that is actually
used in other softwares such as Gromacs. Before we can use AMBER,
however, we need to install it. Despite how many programs contain
automatic installation wizards, you have to do this manually for AMBER.
Even though ambertools is only available for MacOS and Linux, this guide
includes how to install it on Windows machines as well.

9

1. Introduction

Amber is a very useful software tool for molecular mechanics related simulations and
calculations. It mostly uses a classical level of theory, but is nevertheless very practical for
large systems such as proteins, membranes or large polymer clusters that are simply to
complex to be treated quantum mechanically. Amber is often the first step to take in
modelling molecular mechanics, that paves the way for interesting result and a chance to get
a very detailed view on the system one might be working on experimentally. The first step,
outlined in this chapter, would be to download and install amber. Before we can do that, one
should be aware of that there is no general user-friendly graphical interface for amber, but it
is completely run through the terminal. Therefore, you should familiarize yourselves with the
terminal. Some useful commands are:

cd ​<argument> ​- change directory to the path specified in ​<argument>
ls ​<argument> ​- lists all files and directories in the current location. Adding -s lists all sizes in
kb and -a lists hidden items.
mkdir ​<argument> ​- creates a new directory named ​<argument>
nano ​<argument> or ​vim ​<argument> ​- opens a text file in the terminal, will be useful for
quick editing of input files later.

2. Windows 10

There is currently no implementation of ambertools on Windows platforms; however, with
Windows 10 Professional, Education or Enterprise, one can activate hyper-V, which is a
virtual machine manager, where one can create an ubuntu environment (“a computer inside
your computer”), and use the steps for Linux below. This is the most viable option for
Windows users since many different programs that we will use in the future are in Ubuntu.
The following requirements must be met:

● 64-bit Processor with Second Level Address Translation (SLAT).
● CPU support for VM Monitor Mode Extension (VT-c on Intel CPU's).
● Minimum of 4 GB memory.

10

To get to this site, simply google Ubuntu download, and you should find an updated version
of this file. Click Download.

Even though this is in Swedish, we can see that the file we are downloading is an iso file, or
a mountable disk file. We will use this later.

Go to Apps & features.

11

In the search field, type ​Turn Windows features on or off​.

Select the Hyper-V option. It should look as it does on my screen above. Then, you need to
restart your computer in order for this option to take effect and for this function to be
activated.

3. Setting Up Ubuntu

The next step is to actually create a virtual machine. Open the hyper-V manager.

12

We want to create a new Virtual Machine. Choose the highlighted option.

13

From here, we want to do a couple of things. Click next.

Give the virtual machine a name, ignore the “specify generation” option, and go to assign
memory. Here, you need to assign at least 2048 MB of RAM for Ubuntu to start up.

14

One Configure Networking, choose Default Switch that should suffice for our intents and
purposes. If you are having connection problems, troubleshoot this Default Switch.

Here, you can allocate the total hard disk size. Choose however much you can spare. I used
200GB.

15

Next, we need to install ubuntu on this virtual computer. We will use the file we downloaded
earlier, .iso-file for Ubuntu. Then, you would have created the virtual machine itself. Simply
double click it to start Ubuntu. From here, you can press finish and open the virtual machine
by double clicking on it. Start it and follow the steps for ubuntu installation (everything is very
self-explanatory there)

4. Linux (Ubuntu)

Simply googling ”amberXX download” suffices (where XX stands for the last two digits of the
year). For this tutorial, we used ambertools 18, however not many crucial changes are done
from update to update. There are two packages that can be downloaded - amberXX and
ambertoolsXX. All the functionalities are implemented in the free version (ambertoolsXX), so
that is the one we will use.

1. Upon Download, you will see that there is a ​.tar.bz2​ extension on the file. Unzip this
file using the ​tar -xvfj <argument> ​command in the terminal. You have to change the
working directory to the directory where the file is in your terminal using ​cd​. If you are
unsure of your location, use ​pwd ​or ​ls​ to navigate.

2. Cd​ into the directory called amberXX, and type:

sudo apt-get install bc csh flex gfortran g++ xorg-dev zlib1g-dev libbz2-dev patch

Type your password when prompted, and answer ​yes​ to any questions.

3. Write ​./configure gnu​, answer ​yes​ to any questions.
4. Write ​source /home/<path_placeholder>/amberXX/amber.sh

16

Note that the <path_placeholder> is to be replaced with the actual path to the
amberXX directory (amberXX is also a placeholder and should be replaced with the
name of your amber directory). This path can be easily found by the command ​pwd​.

Sometimes, it is necessary to write this every time the terminal is opened or closed.
(of course one can change the ​.bashrc​ file.

5. In the amberXX directory, type ​make install​, and answer yes if prompted.
6. Now it’s ready to use!

17

The PDB file format

The PDB file is a powerful tool for viewing protein or nucleic structures.
The format is tailored to fit polypeptides, but can cunningly be used in
tandem with AMBER parameter files such as frcmod and mol2 to
introduce organic molecules or inorganic complexes that are ready and
parameterized. In this chapter, we will go through the file format
briefly.

18

1. Introduction
The PDB file format is very useful at first glance, but a lot of manual editing could be
necessary in future steps in Amber and especially the leap environment, where recognition
of standard residues and non-standard residues entered by the user is crucial. While it may
be user friendly in visualisation programs, it contains many different functionalities for
separation of protein chains, recognition of residues and the CONECT records to make it
easier for physicists making crystal structures to communicate with the structural biologists
making models based on those crystal structures. In order to tamper with these
functionalities to use in Leap, it is essential to understand them. While PDB files are
designed for proteins, they can be used (with limited success most of the time) on any
molecular structure.

2. Structure and linearity
The basic structure of the PDB file is:

I. Title
II. Secondary Structure record

III. Atom list
IV. CONECT records

These objects are arranged in a very long list, containing all information necessary for e.g.
Chimera to visualise a correct and informative structure, including bonds and etc. In short,
the title is trivial, the Secondary Structure record determines how the ribbon visualisation
option will look, and also has some implications if rotamer libraries are applied. The Atom list
contains the coordinates of all atoms, which residues they are linked to and information on
the element type (C, H, O, etc). Lastly, the CONECT records specify which atoms are
bonded to which.

Additionally, an important note to make is the linearity of the atom list. I.e. you cannot
reorder residues or atoms that are not inherently in order. having residue 101,102,104,103 in
this order is illegal.

3. Secondary Structure record

The Secondary structure record contains all information that is necessary for a visualisation
program to know where to form Helices and Sheets in the 3D-structure of the protein of
interest. The first column signals the type of secondary structure, either HELIX or SHEET.
The subsequent columns contain the residues that are contained within this structure.

4. CONECT record

The CONECT record is very important to keep track of. For leap, it is best to simply not
include it (for complex structures with many non-standard residues incorporated in the
protein backbone.) These records work in both ways, i.e. if atom number 780 is bonded to
782, then the connect record would contain two separate accounts of this bond; CONECT

19

780 782 and CONECT 782 780. You can manually specify additional bonds if they are
important in visualisations. Glycosylations, for example, are usually not bonded in the crystal
structure but it can be good to bond them in the PDB file.

5. Chains, residues and atom numbers
The atom list is the bulk of the PDB text file, and contains all coordinates in XYZ-format of all
the atoms. The columns represent:

I. HETATM or ATOM, the type of atom. HETATM is only used for non-protein residues
or molecules. ATOM is the default atom type that can be expected to be in a protein.

II. Atom number. The number of the atom. Even though, residues can through errors be
renumbered, atom numbers are very consistent throughout the whole procedure.

III. Atom name. While the name has no physical meaning, it is very important the same
atom name does not occur twice within the same residue. Also, NEVER change the
atom name of a standard residue.

IV. Then comes the residue name and number, that are fairly self-explanatory. Just
remember the linearity

V. Then comes the X, Y and Z coordinate in three respective columns
VI. Then comes two columns that aren’t very important. They should have the values

1.00 and 0.00.
VII. The last column signals which element the atom in question is.

6. TER cards
TER cards are a marker that signal the end of one chain, and the beginning of another. For
several separated molecules, it is crucial to include a TER card for recognition of the N- and
C-termini in LEaP, whereby it will add any missing atoms (often times just hydrogens, but
sometimes it adds OXT, an oxygen on the carboxyl group on the C-terminal). If a TER card
is missed, the backbone bonds will simply continue which will cause huge problems in
further simulations. Usually, TER cards are automatically included when saving files in
Chimera, or most of the time when downloading the files from RCPDB.

20

CHIMERA

Chimera is a great visualisation program for proteins (and exclusively
proteins!), that is the leading visualisation and protein editing program
thanks to the tailored routines to the PDB file format. A good
understanding on the PDB file format in tandem with Chimera can
make protein editing an absolute breeze. It is also a very good tool for
making nice pictures and adding effects. It can also be exported in
various formats (although not as many as VMD).

21

1. Introduction

Chimera is a must-have tool for anyone that will attempt to understand any molecular
functionality of proteins. It is an easy tool for adding solvents, visualising PDB-files without
complete CONECT-records, and is very good at recognizing protein structures and
differentiating them from any anomalies such as prosthetic groups, glycosylations or ligands.
This is driven both by the naming of residues (ALA, GLY, etc.) and the ATOM and HETATM
type along with the TER card. Before you look at this, a prerequisite would be to really have
a good look at the PDB-file. It is also good to understand what you gain with a PDB file, and
especially what you loose with it and what information it inherently lacks.

Anyway, Chimera is very useful for viewing both your input and output structures, even
though VMD or Avogadro can sometimes to it better. For visualisation, chimera is one of the
best tools due to its’ emphasis on display settings and the many ways you can change the
appearance and colour of virtually every single unit (atoms, bonds), and even add very
convincing shadows or ambient occlusion effects.

2. Mutation
Especially for rational enzyme or protein design, mutations are crucial. In Chimera, there is a
tool called rotamers, where mutations on standard residues can be made to incorporate
non-standard residues; however, it first requires that you select the residue to be mutated.
The atom specifier tool is very useful in this. The syntax for selection of residues, atoms and
models is:

- model
: - Residue name or number
@ atom number

Only the residue selection syntax is relevant for mutagenesis of a single residue. Using an
arbitrary rotamer library, one can see what would be the expected positioning of the new
residue. Look out for any steric clashes.

3. Alignment
If you have to very similar models, you can align their structures according to different
parameters, for example backbone or similar. It is useful in generational analysis where
several crystal structures are available to get more useful information and intuition in how the
structures differ.

In order to do this, open the model panel and scroll down until you see the align option.
Select the models you would like to align over each other, and press apply. A new screen
will appear where you can choose if you only want different parts of the protein to line up, for
example active domains or only the binding domain or other interesting protein motifs.

22

Before you save a pdb-file containing different models, it is important to merge these models
using the combine command on the command line, or simply select the copy/combine option
on the model panel.

23

AVOGADRO

Avogadro, similar to Chimera or VMD, is a good visualisation program.
Whereas Chimera can be used for protein editing and structural
manipulation, Avogadro is used in these guides for atomic editing. It
can also be used for orbital visualisation, and is the go-to program after
using QM programs (in either .cube or .fchk format).

24

1. Introduction

Avogadro is a very useful tool for both analysis and advanced building that is much harder to
do in other visualization program. In fact, Avogadro can be used, not only make structures or
analyse orbital conformations, but also for input generation for a plethora of Quantum
Mechanical based programs, including Gaussian, Q-chem, NWChem and GAMESS-UK.
While the interface is quite self-explanatory, it could be good to clarify a few basic functions.
Here, we will go through how to visualize orbitals, build structures and exporting it into
pdb-format.

2. Building structures and generating input

Most input structures from pdb lack hydrogens, which makes it crucial to add them

before any simulation or actual calculations are performed. Avogadro does this much better
than, say chimera ​for small molecules​, both inorganic and organic. If you, say, want to dock
a substrate in chimera, it is easier to chemically modify a molecular file in avogadro and then
export it to pdb-format. The function ​add hydrogens ​is very useful in this instance. It is
important to check chirality or other important factors such as protonation state for certain
residues. Avogadro treats every chemical bond as a covalent bond, and assumes
charges=0. Additionally, using the drawing tool, you can add virtually every element at an
arbitrary position, define new bonds and redefine existing structures, although a good
starting structure is recommended. After this, it is always useful to perform a geometric
optimization in, say, GAMESS or NWChem.

In the ​Extensions ​section, you can choose which program to make an input file for. While
there are options that you can choose for every, many functions are absent from this GUI,
and manually editing the input file grants more possibilities - even logic trees in NWChem. I
personally only use this function as a good way of getting the geometry of the initial structure
into a XYZ-format. If you want, you can use a Z-matrix format as well (there is usually a box
for that on the GUI)

3. Orbital and structural analysis
If you have a molecular file, chances are it can be opened in Avogadro. Chimera has some
very weird issues with opening e.g. mol2-files, which we will use later (see LeAP-section). In
short, simply find your file and open it in Avogadro. There are some graphical options that
could be changed if one would be interested - under Display Settings… you can toggle
Display Types, which is an additional window that will be visible on the left side of the
screen, where you can change how the molecule is displayed. This is very useful for
visualisation.

If you have orbital cube information stored in your file, e.g. .cube or .fchk from gaussian or
NWChem, these files can also be opened by Avogadro. To visualise the Molecular Orbitals
themselves, follow these steps:

25

Open your structure file. Along with this, a list containing some HOMO’s and LUMO’s should
also appear. Orbitals from HOMO-2 to LUMO+2 with a standard iso-value of low quality will
be automatically rendered upon opening the file, so it may take a bit more time than usual.

Often, these automatically rendered orbitals aren’t nearly good enough to visualise the full
extent of the calculation, so generating custom orbitals is usually more informative. Select
Create Surfaces… under Extensions.

26

Here, you can choose the orbital of choice, and the surface type to Molecular orbital. This
function creates an iso-surface of the electron probability, so changing the iso-value changes
the size of these surfaces.

27

FRCMOD AND MOL2

The frcmod and mol2 file formats are very useful in the process in
getting from an initial prepared PDB file from Chimera or Avogadro, to
a processed and ready file for Leap. This chapter is essential for anyone
who is in need of parametrization of nonstandard organic residues, but
also valuable for any QM-parametrization that you would like to do
yourselves.

28

1. Introduction

The frcmod and mol2 files are very special files. They are more than the PDB-file associated
with the same structure, in the way that they are the connection between the coordinates
and the parameters for the structure, i.e. atom types (mol2) bond types (mol2) and bond
parameters (frcmod) as well as nonbonded parameters (frcmod). They will be used readily in
the MD simulations and QM/MM simulations in Amber, and are used in tandem with the
existing gaff.dat data files in the parameter libraries pre-existing in amber.

2. mol2

mol2 is a more interesting file format than PDB. Instead of only containing coordinates and
secondary structure information, the mol2 file also includes atom types (not only elements,
but also how they are connected (bond order) and how they are hybridized (as in organic
chemistry, the hybridization of atomic orbitals in this way is nonsensical in quantum
mechanics). nr, for example, is a Nitrogen atom in an aromatic structure. These types
determines parameters mulliken charges and van der waals radii, i.e. nonbonded
parameters, but are also used to define and categorise different types of bonds. A n-h and a
nr-h bond have very different parameters, for example).

3. frcmod

The frcmod file contains these parameters that I have mentioned so extensively. There are a
few different parameters that describe certain constants in the Amber Force Fields
equations.​ ​They are individual for every single bond, atom and residue, and are:

K​r​- bonding force constant
r​0​- equilibrium bonding distance
K​𝜃​- bond angle force constant
𝜃​0​- equilibrium bonding angle
V​n​- dihedral torsion constant
𝜙,𝛾- dihedral (spherical) angles
A​ij​- Van der Waals repulsion constant
C​ij​- Van der Waals attraction constant
q​i​,q​j​- partial charges of residue i and j.

The bonded parameters are defined in the frcmod file, i bonds, angles and dihedrals
(torsions). These can be determined ab initio in QM calculations, but since libraries exist for
ordinary, covalently bonded atoms, this is not needed in most cases. In the case of heme
groups or complexed metallic ions, you have to make the parameters ab initio. This is very
complicated and is really only recommended if you absolutely need it, since nothing in QM is
straightforward. frcmod files are essential for input generation of non-standard residues, as
they will provide LEaP with these parameters, and mol2 will provide LEaP with the geometric
structure in which you can find these bonds. To compile these from the gaff.dat library, you
would do best to use antechamber, which incidentally is the next chapter.

29

ANTECHAMBER AND GAFF

Antechamber is a routine for compilation of frcmod and mol2 files from
pdb files. We will use this as the link between the initial crystal
structure and LEaP. GAFF is a library that contains a lot of empirical
and QM data on an array of bonds, angles and dihedrals, basically all
the parameters that you would need in your frcmod files. Antechamber
takes this information, and packs the PDB file with this information by
matching the atom type in the mol2 file with the parameter information
from GAFF. Again, reading the frcmod and mol2 section is crucial for
deeper understanding of this chapter.

30

1. Introduction

To manually implement all parameters and nonstandard residue geometries into useful
frcmod and mol2 files is very difficult for large structures, so that is why we use Antechamber
for this. Gaff is simply the library from which Amber takes all existent parameters for organic
molecules.

2. Antechamber usage

Antechamber is just what it sounds like, for non-standard residues at least, and is used to
prepare the files for LEaP. Antechamber takes the information from a pdb file, and analyses
the structure in the way that seems logical to the program. No triplets, broken bonds, or
incomplete valences are accepted here, so make sure that every bond is defined in the
CONECT records, and that every hydrogen is added in suitable positions. (Please see the
sections on the PDB-files and frcmod and mol2 for further explanation). Furthermore, it is
important to open the file and control that every bond has been interpreted properly, and that
the recognition of atom types matches well with the type presented in the pdb file.

To initiate generation of the mol2 file, run antechamber after sourcing the amber.sh directory
(see the installing amber section).

antechamber -i <pdb_file> -fi pdb -o <output_file_name> -fo mol2

Furthermore, now that we have identified the atom types, we can continue with coupling
those atom types and bonds that are implicitly stated in the bond record of the mol2 file to
the parameters that are stored in the gaff library. parmchk2 is the routine that takes care of
this, but it simply compiles what already exists in the library, so if your bond types aren’t
covered by these files, it will simply fail. Be sure to check the output of parmchk2 since it
does not always give error messages in the terminal. Also, it is useful to check the frcmod
file generated by parmchk2, to see how exact the parameters used were. For dihedrals
especially, patterns like x - n - o -x or similar indicates low accuracy, because any
interactions between the substituents at positions x are ignored. See the Gaff library section
for more information. Anyway, let’s run the parmchk2 command like this:

parmchk2 -i <mol2_file> -f mol2 -o <frcmod_file_name>

The Amber developers have a history of changing the name of this routine for some reason,
so if you can’t find parmchk2 on your version of amber, cd into the bin folder and type ls.
There, there should be an executable file with a name in the same fashion as parmchk2. The
difference between Amber16 and Amber18 is simply parmchk and parmchk2, respectively.
Thus, a parmchk3 would not be unlikely to pop up in the future.

3. Gaff library

31

The gaff.dat library is where all the standard parameters for organic molecules can be found.
If you have more information about specific dihedrals for examples, look into this file and add
them with the suitable syntax and they will be automatically implemented. The more refined
parameters you have, the more exactly you can model your system. Dihedrals are in many
cases very unspecific, and can be updated through literature search or a QM-calculation.
Simply opening this file with a text editor can prove to be very useful for understanding what
kind of parameters you are dealing with. The bonded parameters are listed below. This can
be found in the frcmod or gaff.dat files in the ​amberXX/dat/leap/parm/​ path.

CA-cd 418.3 1.4290 gaff cd-cd
cc-cd 504.0 1.3710 gaff cc-cd
cc-nc 431.6 1.3760 gaff cc-nc
cc-c 377.4 1.4620 gaff c -cc
cd-nc 494.6 1.3350 gaff cd-nc

The first column represents between what atom types the bond is considered. The atom
types should be specified in your mol2 file. The second column gives the force constant of
the bond, and the third column gives the equilbrium bond length, when there is no (virtual)
potential energy stored in the bond. For nonbonded parameters, they are most often
described in the source (include ​source leaprc.gaff​ in LEaP) , but sometimes parmchk2
chooses to include them in the frcmod file. They usually look like this:

nd 1.8240 0.1700 gaff nd
nc 1.8240 0.1700 gaff nc
ne 1.8240 0.1700 gaff ne

The two columns are the A​ij​ and C​ij​ parameters that are used in the Amber Force Field
ff14SB, i.e. repulsive and attractive Van der Waals constants. Further, angular parameters
look like this:

H1-CX-nd 50.110 108.570 gaff h1-c3-nd
C -CX-nd 66.810 111.370 gaff c -c3-na
H1-CX-cd 47.030 111.620 gaff cd-c3-h1; considered parm10 HC-CT-CA (50.0 109.5)
but cd prefered over CA
3C-CX-cd 63.580 111.890 gaff c3-c3-cd; considered parm10 CT-CT-CA (63.0 114.00)
but cd prefered over CA

The text is simply notes on approximations or sources left by the developers or providers of
the source material. The first column gives the angular force constant, and the equilbrium
angle is given in the second column. The angle is of course considered over the planar three
point structure by looking at the angle formed by two line segments from the peripheral
atoms connecting at the central one. The angle formed is then the angle considered. This is
important to think about if you are doing this manually, it can be confusing sometimes. For
dihedrals, things are pretty self- explanatory:

X -nd-os-X 1 4.800 180.000 2.00

32

X -nd-ss-X 1 4.800 180.000 2.00
X -nf-pe-X 1 5.400 180.000 2.00
c3-c -sh-hs 1 2.250 180.000 -2.000
c3-c -sh-hs 1 1.300 180.000 1.000
c2-c2-ss-c3 1 1.100 180.000 -2.000
c2-c2-ss-c3 1 0.700 180.000 3.000

These are some dihedral parameters that I found in one of the gaff.dat files. Here, we can
see that if you are looking at the nf-pe dihedrals, any substituents to these atoms will be the
treated the same, even if they can have very different properties. If you see too many of
these X-es in your frcmod file, maybe take a look if you can find parameters manually. On
the other hand, you have very nice dihedral information for the c-sh bonds. Sometimes, you
can approximate your parameters by finding the ones that have the most chemically similar
species. The first column is the source (not relevant), the second column is the torsion force
constant, the third is the equilibrium dihedral angle (most are 180​o​ due to steric
clashes/interactions). You don’t need to worry about the last one either (if you do, you
already know it). Lastly, we have mass parameters, that are very easy to get a hold of (just
google the atomic weight of the element you are considering):

nd 14.01 0.530 gaff nd; Sp2 N in non-pure aromatic systems, identical to nc
nc 14.01 0.530 gaff nc;
ne 14.01 0.530 gaff ne/nf; Inner Sp2 N in conjugated systems
cc 12.01 0.360 gaff cc/cd; Sp2 carbons in non-pure aromatic systems, identical to cd
cd 12.01 0.360 gaff cc/cd Sp2 carbons in non-pure aromatic systems, identical to cc
cf 12.01 0.360 gaff cf; Inner Sp2 carbons in conjugated systems

As you can see, the parameters should be constant for a single element (all cc, cd and cf
atom types correspond to carbon with different electronic conjugation). This can be tweaked
if you are doing experiments with weird isotopes. This can change your simulation quite a
bit, so be careful.

33

LEAP

Leap is sometimes what I want to do after a long day of difficult
parametrization of organic compounds, but it is incidentally the name
of the program that I do it in. Leap is a great program for preparing files
in different formats for the actual MD simulation in Sander, but is very
unintuitive at first glance. To understand this better, I would highly
suggest looking at the section about frcmod and mol2. Also, a quick
refresh on the PDB file format and what information is contained within
could be very useful. It is a tool provided in the ambertools package
(both tleap - terminal based - and xleap - graphical user interface -)

34

1. Introduction

Before we can start with the Molecular Dynamics simulation, we need to prepare the
appropriate files. For the Amber Force Field to work we need three things; (1) parameters
(what properties the atoms and bonds involved have) (2) topology (how the atoms are
connected), and (3) coordinates (where
the atoms are). The first two things are
stored in the parameter/topology file
(.prmtop) and the third thing is stored in
the input coordinates file (.inpcrd). Since
the only thing we want to change during a
Molecular Dynamics simulation are the
coordinates/geometry of the structure, it is
very, contrary to what it might appear on
the picture, very convenient to separate
.prmtop and .inpcrd. This enables us to
perform subsequent simulations by simply
exchanging the .inpcrd file. Even the
format can be changed to .mdcrd, .rst7 or
.rst, and latter programs can still handle it.

Everything we have done so far has been
to prepare the initial structure for leap.
Leap compiles all the PDB records with
what is found in the mol2 files or existing libraries. In the PDB file, we have records of names
and coordinates of every atom from the crystal structure. As you can see, the CONECT
records in the in the PDB file are not too important within leap, since we will see how it
recognises already existing residues depending on how we load them into the LEaP
routines, and replaces the CONECTs in the PDB files with bonds in the parameter and
topology file. The coordinates in the library files are updated to match at the correct places in
the PDB file. (for example, if our nonstandard residue is a modified Alanine called ALAX,
Leap will simply add the missing atoms according to what is stored in the library files at the
appropriate location so that the coordinates from a mol2 file are aligned with those of the
PDB file). That is why you can remove all the CONECTs from a PDB file and still find that the
topology is correct. Especially with standard amino acids, this is very easy, since the TER
cards determine when the N- and C- termini come on the chain, and it will bind the backbone
of everything inbetween. Also, hydrogens will be added automatically on all residues if you
have loaded the correct source material.

2. tleap and xleap

There are two implementations of LEaP in the ambertools package, tleap and xleap. xleap
is, as the name suggests, a visualisation tool with a separate GUI that will be initiated when
prompted with the command ​xleap​ in the terminal. It sucks for large structures however, so it
is easier to simply use a script in tleap. tleap is the terminal based implementation of LEaP in

35

the ambertools package. The only difference is that when typing ​edit <molecule> ​in xleap,
you can visually see the structure. It is only useful for small molecules however, because of
that the bonding has to be done manually by dragging the mouse from one atom to another,
which is immensely tedious. Let us therefore continue with tleap.

Before we load in the pdb file that contains the appropriate geometry, we need to load all
files that we need to process it so that the topology is correct and the missing atoms are
added so that they match the records. Firstly, we load the general libraries for standard
protein residues, organic molecules, and water residues. In this case, I used the TIP3P
model for solvation. In future renditions, you should use updated versions of the standard
Amber force field. In this case, I used the latest one - ff14SB.

source leaprc.protein.ff14SB
source leaprc.gaff
source leaprc.water.tip3p

If we have any non-standard residues apart from water, we need to load BOTH the frcmod
and mol2 files for this file (for information on how to generate these files, please have a look
at the antechamber and gaff section). THIS IS VERY IMPORTANT: You have to name the
object into which you are loading the mol2 file the same as the residue in the template pdb
file is called.

<object_residue_name> = loadmol2 <mol2_file>

loadamberparams <frcmod_file>

Then, we can finally assign the structure of the pdb file into an object in LEaP:

<object> = loadpdb <template_pdb_file>

Now, it should have been properly loaded. Be sure to watch out for any messages warning
about doublets (they will be deleted, so if you have misnumbered the residues, the atom
count will be incorrect), or if any unexpected heavy atoms were added. Before we continue,
we have to process the file so that the topology is normal. This is only needed if you have
non-standard residues. If you have a non-standard amino acid in your backbone or a
non-standard residue that needs to be bonded to another residue, the bond command must
be used:

bond <object>.<resnumber>.<atomname> <object>.<resnumber2>.<atomname2>

The syntax here can be confusing at first glance, but it is really easy. In the PDB file, you can
find the residue number of the residues that you want to connect. Within each residue, the
atom name can be found (for example N, C, CA, HE2, OD1 etc.). This ties in with the reason
why each atom name has to be unique and why LEaP deletes any doublets - to make sure
that you only bond the atoms that you meant to connect. If you get an error message here,
go to the PDB file and remove the guilty CONECT lines to proceed successfully. Note that

36

the atom numbers don’t match if LEaP added missing atoms when loading the pdb file (this
can get really complicated, so don’t even bother thinking about how the atom numbers
change due to LEaP weirdness). Below is an example of coupling the N-terminal of amino
acid number 65 to the C-terminal of number 64, and I loaded the pdb file into an object that I
named mol (​mol = loadpdb <template_pdb_file>​):

bond mol.65.N mol.64.C

To check the file for misplaced atoms, it is always useful to save a pdb file. Note that this
PDB file will NOT necessarily have the correct topology, and will never show the results of
the bond commands. It will be evident if you have bonded the molecules correctly if your
results look fine and you have no residues flying away. Anyway, save off a pdb file by
referring to the object that you loaded the pdb file into:

savepdb <object> <output_filename>

It is usually really useful to solvate your protein or structure in a box of water. (you can use
other geometric objects than cubes (box), but this is easiest as a starting point). But before I
do this step, I usually save parameters and input coordinates (prmtop and inpcrd files) for
the the dry protein only.

saveamberparm <object> <filename.prmtop> <filename.inpcrd>

solvatebox <object> <solvent_model> <solvent_radius>

Or, if you, like I am here, using the solvent force field TIP3P in a box format, replace
<solvent_model> ​with TIP3PBOX. I usually set ​<solvent_radius> ​to about 10.0. This value
is in Ångströms. What is also good to do to simulate realistic conditions is to add explicit ions
counteracting the charges on the protein. The last value, that I have set to 0 can be changed
if you want another overall charge.

addions <object> Na+ 0
addions <object> Cl- 0

You can add other ions, but be sure to check the frcmod files for ions in the
amberXX/dat/leap/parm/ location​ to see which ones are available. Then, we need to save
the final parameters. We do that in the same way as before.

saveamberparm <object> <filename.prmtop> <filename.inpcrd>

With tleap, you can write all of this into a txt file named <filename.txt>, and execute it using:

tleap -f <filename.txt>​ , and the output should be given directly in the terminal. Good luck; if
you succeed with this, the rest will (should) be a breeze.

37

MD USING SANDER

Sander is a subroutine in AMBER that is used for Molecular Dynamics
simulation. To perform a viable, equilibrated simulation, we need to do
a number of things first. This guide is aimed at first-time users of
sander, but also contains tips and tricks if you are having difficulties
with your simulation. While a full input generation guide is available in
the AMBER reference manual, this is only a brief introduction to a few
of the basic functionalities in sander. For QM/MM in Sander, please see
the AMBER QM/MM section.

38

1. Introduction

In Amber, there are two different implementations - one faster (pmemd) and one slower
(sander). The slower one has more functionalities (we can even use it for QM/MM
calculations and simulations) and the faster one works on easier terms and can often not be
trusted as much, but is a good tool nevertheless. This introduction will cover most of the
important functionalities for simple Molecular Dynamics simulations (MD) in sander.

2. Usage

This program actually calculates the needed trajectories, so be careful with running
nanosecond long jobs on your laptop. For my calculations, I used supercomputers in Umeå
and Uppsala (hpc2n and Uppmax, respectively). Because of that, there are potentially a lot
of arguments that can be entered. It is important that you treat different classes of files
properly within the language of the routine. It is run using an input file (.txt),
parameter/topology file (.prmtop), input coordinates (.mdcrd, .inpcrd, .rst or .rst7), and a
reference file (often times .inpcrd or .rst). Make sure that all of the files you will use are in
your working directory, which is also where multiple output files while end up. The following
options to sander are available:

-O overwrites previous files.
-i input file (.in). The input tells sander what operations to perform and with what settings to
do them. This will become clearer further below.
-p parameter/topology file (.prmtop). The prmtop file generated by LEaP
-c input coordinate file (.inpcrd, .mdcrd, .rst, .rst7). The inpcrd file generated by LEaP, or a
binary restart file generated by a previous sander session. Can also be a mdcrd file, which
can be generated by sander upon request by the user. This is in most cases absolutely
redundant, and obsolete even at the time of writing this. So is the rst7 format.
-r name of the restart file (.rst) generated by sander. It is a binary restart file that can be used
within sander synonymously with inpcrd, as explained above. It contains information about
velocities and other interesting quantities.
-o name of the output file (.out) generated by sander. A text file containing condensed
information about the MD, as energy for every iteration (depending on what your ntpr value
is), as well as estimated time left.
-ref a reference file (.inpcrd, .rst, .mdcrd). Only applicable if you are using restraints (ntr=1 in
the .in file). It is this file that will be the template for the restraints you put on your system,
and a deviation from this structure in absolute space (no gyration or translocation , i.e.
relative positional change, is considered).
-inf an information file similar to the output file, but with information only about the last
iteration.
-x NetCDF file for trajectory analysis (can be ASCII too, but I would not use this format). Only
available if the ntx option is enabled (=1). This is useful for visualisation of your trajectory in
VMD, see the section about VMD for more information. Never run an MD without printing the
trajectory with ntx=1.

39

Sander is run by simply typing the following in the terminal:

sander -O -i <input> -p <prmtop> -c <inpcrd> -o <output> -r <rst> -ref <refc> -inf <mdinfo> -x
<nc>

Typically you do not run only one of these, but several sequential runs that have different
input settings. The general workflow is minimization with restraints, relaxed minimization,
density simulation, heating simulation, MD simulation with equilibration. The following
sections will explain what differences you would typically see in the different input files. The
following settings are available for these input files. (taken from the Amber18 reference
manual). If you are not interested in why we choose different options for different types of
runs, skip this list (it is quite long), and go to section 3. Minimization with restraints.

imin= 0 (default) Run molecular dynamics without any minimization.
imin= 1 Perform an energy minimization.
imin= 5 Read in a trajectory for analysis. Although sander will write energy information in the
output files (using ntpr), it is often desirable to calculate the energies of a set of structures at
a later point. In particular, one may wish to post-process a set of structures using a different
energy function than was used to generate the structures.
nmropt= 0 (default) No nmr-type analysis will be done.
nmropt= 1 NMR restraints and weight changes will be read.
nmropt= 2 NMR restraints, weight changes, NOESY volumes, chemical shifts and residual
dipolar restraints will be read.

ntx= 1 (default) Coordinates, but no velocities, will be read; either formatted (ASCII) files or
NetCDF files can be used, as the input file type will be auto-detected.
ntx= 5 Coordinates and velocities will be read from either a NetCDF or a formatted (ASCII)
coordinate file.
ntb>0. The velocity information will only be used if irest= 1 (see below).

irest= 0 (default) Do not restart the simulation; instead, run as a new simulation. Velocities in
the inputcoordinate file, if any, will be ignored, and the time step count will be set to 0 (unless
overridden by t; see below).
irest= 1 Restart the simulation, reading coordinates and velocities from a previously saved
restart file. The velocity information is necessary when restarting, so ntx (see above) must be
4 or higher if irest= 1.

ntxo = 1 Formatted (ASCII). Format of the final coordinates, velocities, and box size (if
constant volume or pressure run) written to file "restrt".
ntxo = 2 (default) NetCDF file (recommended, unless you have a workflow that requires the
formatted form.)

ntpr Every ntpr steps, energy information will be printed in human-readable form to files
"mdout" and "mdinfo". "mdinfo" is closed and reopened each time, so it always contains the
most recent energy and temperature. Default 50.

40

ntave Every ntave steps of dynamics, running averages of average energies and fluctuations
over the last ntave steps will be printed out. A value of 0 disables this printout. Setting ntave
to a value ½ or ¼ of

nstlim provides a simple way to look at convergence during the simulation. Default = 0
(disabled).
ntwr Every ntwr steps during dynamics, the “restrt” file will be written, ensuring that recovery
from a crash will not be so painful. No matter what the value of ntwr, a restrt file will be
written at the end of the run, i.e., after nstlim steps (for dynamics) or maxcyc steps (for
minimization). If ntwr <0, a unique copy of the file, “restrt_<nstep>”, is written every abs(
ntwr) steps. This option is useful if for example one wants to run free energy perturbations
from multiple starting points or save a series of restrt files for minimization. Default = nstlim.

ntwx: Every ntwx steps, the coordinates will be written to the mdcrd file. If ntwx
= 0, no coordinate trajectory file will be written. Default = 0.

ntwv: Every ntwv steps, the velocities will be written to the mdvel file. If ntwv
= 0, no velocity trajectory file will be written. If ntwv= -1, velocities will be written to mdcrd,
which then becomes a combined coordinate/velocity trajectory file, at the interval defined by
ntwx . This option is available only for binary NetCDF output (ioutfm= 1). Most users will
have no need for a velocity trajectory file and so can safely leave ntwv at the default. Default
= 0. Note that dumping velocities frequently, like forces or coordinates, will introduce
potentially significant I/O and communication overhead, hurting both
performance and parallel scaling.

ntwf: Only use set this to -1 if you want force output in mdcrd. I would highly recommend you
not to touch this option.

ntwprt= 0 (default) Include all atoms of the system when writing trajectories.
ntwprt> 0 Include only atoms 1 to ntwprt when writing trajectories.

idecomp Perform energy decomposition according to a chosen scheme. In former
distributions this option was only really useful in conjunction with mm_pbsa, where it is
turned on automatically if required. Also, idecomp is really useful in qm/mm.
= 0 (default) Do not decompose energies.
= 1 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are added to internal
(bond, angle, dihedral) energies.
= 2 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are added to EEL and
VDW.
= 3 Decompose energies on a pairwise per-residue basis; otherwise equivalent to idecomp
= 1. Not available in TI simulations.
= 4 Decompose energies on a pairwise per-residue basis; otherwise equivalent to idecomp
= 2. Not available in TI simulations.If energy decomposition is requested, residues may be
chosen by the RRES and/or LRES card. The REScard is used to select the residues about

41

which information is written out. See chapters 21.1 or 33 for more information. Use of
idecomp >0 is incompatible with ntr>0 or ibelly>0.

ibelly
Flag for belly type dynamics. If set to 1, a subset of the atoms in the system will be allowed
to move, and the coordinates of the rest will be frozen. The moving atoms are specified with
bellymask. This option is not available when igb>0. When belly type dynamics is in use,
bonded energy terms, vdW interactions, and direct space electrostatic interactions are not
calculated for pairs of frozen atoms. Note that this does not provide any significant speed
advantage. Freezing atoms can be useful for some applications but is maintained primarily
for backwards compatibility with older versions of Amber. Most applications should use the
ntr variable instead to restrain parts of the system to stay close to some initial configuration.

ntr Flag for restraining specified atoms in Cartesian space using a harmonic potential, if ntr >
0. The re- strained atoms are determined by the restraintmask string. The force constant is
given by restraint_wt. The coordinates are read in "restrt" format from the "refc" file. Default=
0.

maxcyc The maximum number of cycles of minimization. Default = 1.

ncyc If NTMIN is 1 then the method of minimization will be switched from steepest descent to
conjugate gradient after NCYC cycles. Default 10.

ntmin Flag for the method of minimization.
= 0 Full conjugate gradient minimization. The first 4 cycles are steepest descent at the start
of the run and after every nonbonded pairlist update.
= 1 For NCYC cycles the steepest descent method is used then conjugate gradient is
switched on (default).
= 2 Only the steepest descent method is used.
= 3 The XMIN method is used.
= 4 The LMOD method is used.

dx0: The initial step length. If the initial step length is too big then will give a huge energy;
however the minimizer is smart enough to adjust itself. Default 0.01.

nstlim Number of MD-steps to be performed. Default 1.

t The time at the start (psec) this is for your own reference and is not critical. Start time is
taken from the coordinate input file if IREST=1. Default 0.0.

dtThe time step (psec). Recommended MAXIMUM is .002 if SHAKE is used, or .001 if it isn’t.

ntt
= 0 Constant total energy classical dynamics (assuming that ntb <2, as should probably
always be the case when ntt=0).

42

= 1 Constant temperature, using the weak-coupling algorithm.[353] A single scaling factor is
used for all atoms. Note that this algorithm just ensures that the total kinetic energy is
appropriate for the desired temperature; it does nothing to ensure that the temperature is
even over all parts of the molecule. Atomic collisions will tend to ensure an even temperature
distribution, but this is not guaranteed, and there are many subtle problems that can arise
with weak temperature coupling.
= 2 Andersen-like temperature coupling scheme,[355] in which imaginary "collisions"
randomize the velocities to a distribution corresponding to temp0 every vrand
steps. Note that in between these "massive collisions", the dynamics is Newtonian. Hence,
time correlation functions (etc.) can be computed in these sections, and the results averaged
over an initial canonical distribution. Note also that too high a collision rate (too small a value
of vrand) will slow down the speed at which the molecules explore configuration space,
whereas too low a rate means that the canonical distribution of energies will be sampled
slowly.
= 3 Use Langevin dynamics with the collision frequency

temp0 Reference temperature at which the system is to be kept, if ntt > 0. Note that for
temperatures above 300K, the step size should be reduced since increased distance
traveled between evaluations can lead to SHAKE and other problems. Default 300.

ig The seed for the pseudo-random number generator. Default is 1000.

vlimit If not equal to 0.0, then any component of the velocity that is greater than abs(VLIMIT)
will be reduced to VLIMIT (preserving the sign).

nkija For use with ntt=9 and ntt=10., For ntt=9, this the number of substeps of dt when
integrating the thermostat equations of motion, for greater accuracy. For ntt=10, this
specifies the number of additional auxiliary velocity variables v1 and v2, which will total
nkija×v1+nkija×v2 [360].Default is 1 for both integrators.

idistr For the isokinetic integrator (ntt=9), the frequency at which the thermostat velocity
distribution functions are accumulated.

ntp Flag for constant pressure dynamics. This option should be set to 1 or 2 when Constant
Pressure periodic boundary conditions are used.
= 0 No pressure scaling (Default)
= 1 md with isotropic position scaling
= 2 md with anisotropic (x-,y-,z-) pressure scaling: this should only be used with orthogonal
boxes (i.e. with all angles set to 90 degrees).
= 3 md with semiisotropic pressure scaling: this is only available with constant surface
tension (csurften > 0) and orthogonal boxes. This links the pressure coupling in the two
directions tangential to the interface.

barostat Flag used to control which barostat to use in order to control the pressure.
= 1 Berendsen (Default)
= 2 Monte Carlo barostat

43

mcbarint Number of steps between volume change attempts performed as part of the Monte
Carlo barostat. Default is 100.

pres0 Reference pressure (in units of bars, where 1 bar≈0.987 atm) at which the system is
maintained

taup Pressure relaxation time (in ps), when NTP>0. The recommended value is between 1.0
and 5.0 psec. Default value is 1.0, but larger values may sometimes be necessary

3. Minimization with restraints

This is usually the first input file that is used in a md simulation. The goal of this run is simply
to relax the structure (the initial guess sometimes contains steric clashes or alike that need
to be taken care of), so what we want to do is to make the system relax, but not fall apart. If
you have as much as one small steric clash between the substrate molecule and the rest of
the protein, they will simply dissociate and your substrate will be pushes out. If you are
unlucky, the whole protein could unfold during this step. That is why we add restraints. The
restraints make it so that we keep the system from straying to much from the initial structure.
The key to this is applying a large force constant, and running a short minimization, so that
we can restart it in the subsequent minimization without the velocity information. The key to
this is to set ntr=1. NOTE: the restraintmask only applies to the residues that were in my
template protein it is very IMPORTANT that you change this to suit your system.

initial minimisation
 &cntrl

imin = 1, ! Minimization turned on.
maxcyc = 10000, ! Total number of cycles set to 10000.
ncyc = 5000, ! Steepest decent minimization for the first 5000 cycles.
ntb = 1, cut = 15 ! NVT (cut = interactions only happen within a 15 Å radius)
ntr = 1, ! Turn on cartesian restraints

 restraintmask = ':1-505', ! Only restrain residue (:=residue,@=atom) 1 through 505.
 restraint_wt = 500 ! force constant for the atoms only in the restraintmask.
 /

4. Minimization without restraints

This is pretty self-explanatory, if you have read the previous section (Minimization with
restraints). We do another minimization, but we remove the restraints on the protein, and
hope that any energy extremes have been eliminated (steric clashes etc.). If you experience
difficulty with getting good structures here, use the input file from the previous section and
reduce the restraintmask to only cover the atoms that are diverging geometrically. Also,
check your parameters, it is often in this stage wrong parameters will be visible.

44

initial minimisation
 &cntrl

imin = 1,
maxcyc = 10000,
ncyc = 5000,
ntb = 1,
ntr = 0,
cut = 15

 /

5. Heating
As you know, the crystal structure is at approximately 0K, so we need to slowly increase the
temperature without making the protein or solvent explode. To do this, we use a Langevin
Thermostat (ntt=3), and make an isovolumetric heating. Later, we shall perform one isobaric
calculation to make sure that the density of the solvent is correct.

Relaxation 1
 &cntrl

imin=0, ntx=1, ! Run MD [imin=0]
 ntb=1,cut=12.0, ! NVT, 8 A cutoff

ntp=0, ! No barostat
ntc=2, ntf=2 ! Shake on
ntt=3, gamma_ln=1.0, ! Langevin Thermostat, 1.0ps-1
tempi=0.0, ! Initial Temperature of 0K
nstlim=50000, dt=0.001,! 25K steps x 2fs = 50ps

 iwrap=1, ! Wrap coordinates to central box
 ioutfm=1, ! Write binary mdcrd
 ntpr=5000, ntwx=5000, ! Write to mdout and mdcrd every 5,000 steps

ntwr=50000, ! Write restart file every 50,000 steps
ntr=1, restraint_wt=50.0, ! Restrain backbone atoms with 4.0 KCal/Mol/A

 restraintmask='@C,CA,N',
 ig=-1, ! Use 'random' random number seed.
 nmropt=1, ! Used to ramp temperature slowly
 /
&wt type='TEMP0', istep1=0, istep2=50000,value1=0.0, value2=10.0, /
&wt type='END' /

As you can see, we added another namelist than only the &cntrl one. here, we are specifying
weights for the nmropt=1 option. We are simply telling it to heat up from the first iteration to
the end of the simulation. The restraintmask only applies to the backbone atoms now. You
usually do not expect the structure to perturb too much during this step.

6. Density

45

As mentioned before, the next step is to try and condensate the solvent - when doing
heating with minimal box restraints (only iwrap), you do not take into consideration that we
actually have a huge solution, even if our explicit solvent model only stretches about 10-30Å
away from the protein or solute. This means that we have to account for the external
pressure that is being applied on this very small region of interest. We do this by enabling
pres0=1 , which means that we have 1 atm of pressure in the solution. As per usual, we are
restraining the backbone of the protein, but in this case, please compare the restraint_wt in
the examples I have listed. In this simulation, the restraint_wt is 5.0, but in the initial
minimization, it was 500. That means that we are loosening up and relaxing the system as
we think that we approach an equilibrated system.

Relaxation 2
&cntrl
 imin=0, ntx=5, irest=1, ! Read box and velocity info from inpcrd
 ntb=2,cut=8.0, ! NPT
 ntp=1, pres0=1.0, ! Anisotropic pressure scaling at 1 atm
 ntc=2,
 ntf=2,
 ntt=3, temp0=300.0, gamma_ln=1.0,
 nstlim=500000, dt=0.002,
 iwrap=1, ioutfm=1,
 ntpr=5000, ntwr=50000, ntwx=5000,
 ntr=1, restraint_wt=5.0, restraintmask=':1-505', ! Keep weak restraints on backbone
 ig=-1,
 nmropt=1,
/
&wt type='TEMP0', istep1=0, istep2=125000,value1=50.0, value2=300.0 /
&wt type='TEMP0', istep1=125001, istep2=500000,value1=300.0, value2=300.0 /
&wt type='END' /

Here, we are using a bit more complicated restraining model with nmropt=1. 25% of the
simulation is bringing the solvent from 50 K to 300 K, and then, for 75%, we are simply
keeping the temperature at 300 K, which is the desired temperature in this simulation. After
this, you have successfully gone from a harsh, crude crystal structure ​in vacuo ​to a solvated
system, hopefully equilibrated, and natural system.

7. MD simulation at desired temperature

Finally, after all parametization, input generation, refinement of structure, and initial
equlibration simulations, we are finally ready for our production simulation as we call it within
AMBER, or Molecular Dynamics simulation, as outsiders would refer to it. These commands
should be pretty self-explanatory, as we are not doing anything new during this simulation.

Production simulation
 &cntrl
 imin = 0, irest = 1, ntx = 7,

46

 ntb = 2, pres0 = 1.0, ntp = 1,
 taup = 2.0,
 cut = 10, ntr = 0,
 ntc = 2, ntf = 2,
 temp0 = 300.0,
 ntt = 3, gamma_ln = 2.0,
 nstlim = 100000000, dt = 0.002,ioutfm=1,
 ntpr = 10000, ntwx = 10000, ntwr = 10000, ntxo = 2
 /

47

ANALYSIS

Upon completion of the Molecular dynamics simulation, we need to make
sense of the millions of velocities, coordinates and forces throughout every
frame of the simulation, that can sometimes stretch for as long as 10^6
frames. Instead of qualitatively viewing the structure evolving in VMD
throughout every frame (while somewhat informative, incredibly tedious
and hides a lot of important statistics), we can use the cpptraj subroutine to
generate plots, graphics and data in csv format to visualise or use further. A
lot about MD has to do with analysis of large amounts of data, and finding
ways of expressing how your data correlates to physical significant
phenomena is essential to a successful and impactful result from MD
simulation.

48

1. Introduction
Generally, if no major structural difference occurs during the simulation (with major, I

refer to domain translocation, or motor proteins in flagella and microtubules), no interesting
information/data can be taken just by looking on the trajectory analysis in VMD. Instead, one
can look at a few parameters that investigate how distances, forces, energies, and tertiary
structure change and form during the entire simulation. This is particularly interesting for
subjects such as electron transfer, or investigation of productive binding modes, where
geometries and distances have to be analysed for every frame of simulation.

To generate the general information, the out file is used, which contains energies for
the every iteration, even if you have set ntx to print every 1000th step. For finer analysis of
distances between individual atoms or residues, you have to use your .prmtop file along with
your trajectory file (preferably in .nc, or NetCDF format, but ASCII should work. ASCII is not
binary though, so the files are bigger). This means that you can only analyse the steps that
you have printed in ntx.

2. Parameters for investigation
There are many different parameters that can be investigated through the parm and

traj commands in cpptraj (see paragraph 3 about cpptraj - commands and usage). Using
different commands and codes in cpptraj, you can extract virtually any information available
for the trajectory that you want to analyse. However, there are 5 parameters that should
always be investigated to verify the validity of your MD simulation.

Temperature analysis. When you set your production simulation to 300K, you make
the solvent shake so that the kinetic energy of all the solvent particles amounts to 300K.
That doesn’t happen immediately, however, since the solute needs time to equilibrate
according to the force field parameters. Therefore, if you see an MD simulations temperature
curve, and it is still rising by the end of the simulation, it has not reached equilibrium, and the
results cannot be trusted. This applies to every parameter since when equilibrium is
reached, we are able to simulate the system under realistic conditions.

Energies. If kinetic energies, potential energies or total energies for the system are
oscillating, rising, or jumping between states (should look like stairs or platforms), the system
probably undergoes major conformational shifts. A more likely option is that the protein of
interest has unfolded during simulation, or, if you have two different proteins, that they
associate/dissociate with each other.

RMSD. This is the root mean square of the distance from the original structure. This
is not, however, in cartesian coordinates, but the structures are aligned by minimizing the
RMSD. A change in RMSD means that the protein structure has not reached equilibrium,
and probably is in the process of relaxation. If you are unlucky, your enzyme is unfolding.

RMSF. This is the root mean square of the forces within the system. This is a good
measure for if the system has relaxed, or if it is strained. You should see a downwards trend
if you are starting from a crystal structure, or an upwards trend if you are heating your
system.

Radius of gyration. This is only applicable for globular proteins. The radius of gyration
measures the approximate radius that the object has during simulation. If this radius
changes significantly, it means that the protein is expanding or shrinking. If it expands, it is
unfolding. If it shrinks, it is folding more.

49

3. cpptraj - commands and usage

You can generate most of this
data using the cpptraj subroutine in
ambertools. Initiating cpptraj can be
done by simply typing cpptraj after
sourcing amber.sh (see the section
about installing amber). This should be
what you see. To generate the
necessary files, we will need to load in
the parameter/topology and trajectory
data. To load in the parameter/topology
file, use the command

parm <path_to_.prmtop_file>

The parameter/topology has to be loaded first. Be sure to load the parameters associated
with your trajectory file. Then, we can load it:

trajin <path_to_.nc_file>

Next, we can use a plethora of different commands to generate the necessary files.
Here is a list of commands, their usage, and what output you can get from it. Before we can
do that however, we need to install xmgrace or similar programs that we can use to visualise
the .agr files we will generate. Simply google xmgrace and there is usually really nice
installation guide. To start xmgrace, use ​xmgrace <input_file.agr> ​in the terminal, and you
will see an interactive graph.

Sometimes, you only want information about a specific set of atoms. We need to
select these using the internal cpptraj masking syntax. As per usual within amber, the
symbols are : for residues, @ for atoms and # for models. @ and : are applicable both to
numbers as well as names for residues and atoms. For example, for a residue called ALA
with the resid 2, :2 will refer to that particular residue, while :ALA refers to all residues called
ALA. To get information about atoms and residues loaded through the parm and trajin
commands, you can simply type ​resinfo​ or ​atominfo​. If you only want information about a
certain selection, use the masking syntax after the ​resinfo ​or ​atominfo​ command.

Also, in the masking syntax, there are operators that function the same as the logical
operators AND and OR, where AND is exclusive and OR is exclusive. The symbols are, as
per usual & for AND and | for OR. For example, if we mean to select only the CA atoms
within the first 100 residues, the syntax would be:

:1-100|CA

Lastly, and perhaps most interestingly for users with enough imagination, you can

use distance restraints, i.e. only masking atoms that are within a certain radius from an atom
or every atom of a residue. For example, the following line means to select every atom within
a radius of 5.0 Å of atom number 300:

50

@300<@5.0

Or, if you want every atom within every residue in which at least one atom is closer

than 5 Å from atom number 300:

@300<:5.0

Now, we have all the tools to use the commands. The usage should now be

straightforward, so whenever ​<mask> ​appears, use to syntax provided above. To find the
distance between two masks, type:

distance <name> <mask1> <mask2> out <filename>

Where, if you would like to open this output file (generated by ​out <filename>​) in

xmgrace, add ​.agr ​as an extension to your filename, and cpptraj will automatically create the
file in the correct format. Next, we can find rmsd’s and rmsf’s by using:

rms <name> <mask1> first out <filename>

atomicfluct out <name> <mask1> <filename>

adding nofit or mass will take cartesian coordinates RMS’s and mass-weighted

RMS’s, respectively. The first one above is used for RMSD, and the second one is for
RMSF. Finally, radius of gyration calculations can be done in an analogous fashion, by the
simple command:

radgyr <name> <mask1> out <filename>

Again, adding .agr as an extension should be recognisable to cpptraj and readable

for xmgrace (and a lot of other plotting routines/programs).

51

VMD

VMD is a visualisation software mainly for Linux and MacOS machines.
We will use it to visualise molecules, orbitals and even trajectories
(movies!) from our MD simulations. It is also useful since we can export
our file to a number of file formats for work in 3D animation software,
3D printing, or simply for creating nice-looking images. This guide also
includes a small section on installing the software in question.

52

1. Introduction

While I personally have some unfinished business with VMD, it is generally viewed as a
good visualisation tool, and that I have to give it. Never use it, however, for input generation -
Avogadro, Chimera and even cpptraj and LEaP are better with this. (The last two are
commands within AMBER). VMD can be used to visualise trajectories (i.e. actual movies,
your simulation frame for up to a second to second time scale), molecular orbitals and has
more options for shading, lights and surface options. In short, VMD is usually what you use
to render images for scientific articles, posters or your Wiki! Another great things is that you
can export them in virtually any format to be used in animation programs such as blender.

2. VMD Download and installation

The VMD download and installation is very similar to the installation of AMBER. I would
recommend to install AMBER first, and then install this, since I am unsure whether additional
packages are needed, especially in Windows-Hyper-V environments. VMD is available both
for MacOS and Ubuntu, but not Windows. Please see the Installing Amber section for an
explanation on how to set up the ubuntu environment in a virtual machine in windows.
(NOTE: You can do an X11-Powershell environment as well but I really recommend the
virtual machine option). Anyway, google something along the lines of “download vmd”, and
you will find a link to the download site. Please download it either for Linux 64x or MacOS.
Cd into the Downloads directory from your home folder.

cd Downloads

Then, we need to unzip the downloaded file. If the extension is tar.bz2 or tar.gunzip, use the
tar​ command with different flags. Google it if you’re having problems here, it should be
straightforward but they keep changing the zip method.

tar -xvfj <vmd_directory>

cd into the unzipped vmd directory, and type ​./configure​. When configured, you can go
ahead and install vmd by ​make install​. Then, answer yes to any questions. Then, it should
have been added to your .bashrc, so simply typing ​vmd​ in the terminal will suffice.

3. Usage with MD

In MD, the hardest thing is to know which files to import into VMD. No conversion from
amber is needed. Choose the Amber trajectory file format for import of a .nc file, and the
prmtop file and import it in the Amber parameter/topology file format. Then, you should be
able to see a movie-like trajectory with every frame representing the coordinates taken every
ntx:th iteration (see the section about the sander/pmemd routine for more information on
what this means). This was done a ubuntu virtual machine, MacOS looks a bit different of
course but has the same core functionalities. After you have clicked New Molecule… under
File, you should be greeted with this:

53

When selecting a file in .nc format (netCDF), vmd should determine the file format
automatically.

I chose one 8-frame simulation I did a while ago, named
1GYC_SOLV_SMZ_prod_restrict.nc. Thanks to the binary nc formatting, the file type could
be determined by vmd. Sometimes, you need to this manually. The file type should always
be NetCDF (AMBER, MMTK).

54

When you load the .nc file, nothing should happen. You are loading a trajectory with new
coordinates, but no information for VMD to relate to any interesting quantities, such as atom
types and bonds (topology). So for that, we need to load the .prmtop file that we started the
simulation with (again, the section about sander explains how this is utilized). It should
recognize it as an amber parameter file.

Now, you should be able to see your system. Mine consists of a solvated protein. Now, you
can really play around with the Graphics and Display options. I got this nice 3D surface out
of it:

55

4. Usage with QM

Repeat the process for usage in MD. You should see the same molecule as if you loaded a
MD output file, however, when running the QM, you can use a couple of commands in e.g.
gaussian to get cube files from a checkpoint (.chk file). These cube files contain volume data
interpreted as isosurfaces in VMD, along with the molecule information, which is separate
from the molecular coordinates. This is perfect for visualising orbitals.

56

When you open the VMD visual interface, follow the same steps as in MD to load a
molecule. Load your .cube file into VMD, and it should be determined in the correct format
(gaussian cube). Into this particular cube file, I have loaded two molecular orbitals (by the
MO=HOMO,LUMO ​option in the ​cubegen ​command), and I load them separately into VMD.

You should see only the molecular structure in lines or CPK. To create the isosurfaces that
correlate to the orbitals. To do this, go to graphics and choose graphical representations.
The following window should appear.

Press “create Rep.”, and choose “Isosurface” under the dropdown list. Selection should be
set to <volume>. A plethora of options should appear. Your setup should look like mine. Pay
special attention to the options “Draw” and “Show”. The isovalue is set to zero. Now we will
change it.

57

The orbitals that we want to visualise are electron iso-probability curves, which means that
the electron in question has a probability that is larger than the iso-value to be inside of the
isosurface. (iso means the same) Thus, the larger the iso-value the smaller the orbitals.
Usually an iso-value between 0.01 and 0.1 suffices for a good picture of the electronic
density.

If we set the Coloring Method to ColorID, we can change the colour of the orbitals. Creating
a new representation and setting the iso-value to -0.01 will give you the other phase of the
orbitals, and you will then have a full picture of the electron distribution.

58

This was my final picture, without any other display settings.

59

QM in GAMESS
GAMESS (​General Atomic and Molecular Electronic Structure System)
is a software for Quantum mechanical (QM) calculations, and is free for
academic use. This section will clear out the syntax, logic structure,
and input format in GAMESS. If you are not familiar with computational
quantum chemistry, either read up on the subject or only read section
6 in this chapter.

60

1. Introduction

Welcome to the Quantum Mechanics (QM) chapter. Beware, from this point, things

are much less trivial than what they have been in the Molecular Dynamics and classical
simulations chapters. Using the tools provided by GAMESS, Gaussian16 and NWChem, you
can calculate everything from free energies of association and dissociation (affinity), saddle
point and frequency calculations (activation energy and reaction coordinate), perform
3D-scans for potential energy surfaces (for reaction characterization), geometry
optimizations (for preparation of files as well as electron density and orbital analysis),
integration in the time domain (for excitation energies or UV/VIS absorbance spectra), as
well as optimized frequency calculations for parametrizations for Molecular Dynamics
simulations (see the previous chapter).

As mentioned, the QM part of your project can cost a lot of time, but gives a whole
new picture of the actual biochemistry of the enzyme. Since this is the deepest theories
available, some of them physically exact (but with computational approximations), which
means that development in these areas can lead to virtually exact calculations even of large
systems. But with such a powerful tools comes a lot of problems.

Firstly, understanding the methods and choosing methods require at least a
background in organic chemistry, and a good understanding of orbitals and basic quantum
chemistry, i.e. what the Schrödinger equation is, what the electronic Hamiltonian is and why
calculations for any other system than a one-electron system never can be exact, with the
current iterative approach.

Secondly, using the methods can sometimes be unintuitive, which is why making a
guide for this is very challenging. Sometimes, to solve convergence issues or calculation
errors, some creativity is due, for example trying a completely different approach. Here, it is
good to point out that you should never be afraid of trying new things. Sometimes, if your
calculations are taking very long and still aren’t converging, using more advanced basis sets
and augmented functionals can do the trick. In the end, the more you understand about
computational quantum chemistry, the easier solving problems will be.

Thirdly, analysis of results are crucial - never trust the output blindly, even if you have
a good energy value - the density may be completely wrong, and for spin unrestricted runs,
spin contamination often occurs. This means that choosing your model well and having
control over what parameters you want to find is crucial to how impactful your results can be
to your overall project.

Before we begin, there are a few technical prerequisites. You have to have Avogadro
installed (see the section on Avogadro) for input generation, and be familiar with Chimera for
the pre-processing of your protein-sized system.

Additionally, a good point when working with a quantum chemical approach is that
you try to mimic nature, so never forget that your modelled system has basis in a natural
system. The more you know how your natural system behaves, the more you know how your
system ​should ​behave. Analysing differences between your model and nature can often give
a lot of information of in what direction you should develop your model (and sometimes even
give fundamental information or clues about the natural system).

61

2. Background

If you are completely new to QM, it would be a good idea to read up on a few
concepts, or just trust that I know what I’m doing and follow the workflows below. The final
flowchart in this chapter is a sort of “too long, didn’t read” summary of the how to use
different methods in different situations. If that doesn’t work, going back to each section to
troubleshoot is an easier way to go about QM than trying to understand everything from the
start. In many ways, the proper way to approach this part of your project is with an open
mind and a will to learn.

As you can see, even the handbook required a short user instruction when it comes
to QM, so it is quite complicated. There are many programs that can perform quantum
mechanical calculations. Among these, GAMESS is a good, non-commercial (free!) program
that has many functionalities implemented, e.g. tools for excited state geometry and energy
calculation, many functionals for DFT, Time-dependant DFT as well as an array of
state-of-the-art basis sets. Note that GAMESS is for academic use only, so do not use it if
you want to make a profit out of your project in the future. For that, I would recommend
Gaussian16 or, my personal favourite, NWChem. Also, amber contains quantum mechanical
routines that must be run in GAMESS binaries, which means that for QM/MM, GAMESS is
absolutely necessary to install. In Sander, it is activated using the ​ifqnt=1 ​keyword in the
&cntrl ​list, and a separate ​&qmmm ​list, then if ​qm_theory=’EXTERN’ ​, you can add a third
namelist called ​&gms​, and add your options for the qm calculation. The standard is usually
HF STO-3G SCF calculation, so it is very important to change it. Sander will then generate a
GAMESS input file with the specified options in the &gms namelist.

After installing it on any device, rungms can be used in the terminal with the input file
as an argument, for standalone quantum mechanical calculations. For integration in the time
domain, for example real time time dependant DFT (RT-TDDFT), I would recommend that
you buy NWChem, that is much more straightforward than this.

rungms <input_file_name>

Most supercomputers also have this program, and it usually runs on both cpu’s and

gpu’s. For supercomputers though, I would recommend to use​ ssh -x11​ or similar so that
you can access the visual interface gaussview, where you can generate the

GAMESS is a software that does Quantum Mechanical calculations. This is crucial
because it is only with quantum mechanical or EVB based models that we can model the
forming or breaking of bonds. (EVB takes 1 month to learn and 2 months to calibrate for a
protein-sized system, so it is not recommended if you don’t have an expert on EVB within
your iGEM team). This guide will only cover how to use the different models and methods
and what kind of information you can get from this. Remember that there virtually is no limit
to what chemical reaction or interaction you would like to model; however, beware of
electron transfer or quantum mechanical tunneling phenomena, since these require a very
good understanding of the chemical and physical properties of your system, to condition the
correct environment, and diffuse corrected cluster functionals. Also, for more intricate
kinetics, you need to do several computationally costly calculations, so please research

62

everything carefully before you decide on what system you would like to set up to solve your
issue.

It should also be mentioned, to whomever hasn’t read the first chapters about
classical modelling, that a major downside with QM is that the calculations take a long time
to complete. Some of my calculations took 2 weeks on a supercomputer with GPU-volta
nodes and 2x5120(CUDA) and 2x640(Tensor) processors, so be careful with starting too
lengthy and heavy runs(Yet again, the system I investigated contained 4 unique
organometallic complexes with a couple of diffuse orbital that stretch across 25 Å with over
700 electrons, so no wonder it took so long). While most things converge with enough
computing power, it is much more effective to condition your system to work in an
environment that is sufficiently simple, but accurate enough.

3. Input file structure

First of all, we need to find how our system looks empirically. For longer projects, I

would recommend to first run the calculation as exactly as you can, and then try to
reproduce those results with much simpler settings. This is vital if you want to get good
results in higher throughput.

Before we begin with the individual methods, it could be good to go through the input
file structure, and the format to present it in. If you don’t want to copy the XYZ-coordinates
from your .pdb file I suggest you use Avogadro for input generation. It also gets a lot of the
basic structure of the input file set for you to edit it, instead of building it from scratch.
Through the extensions… option you can choose Gamess. While the same functions and
levels of theory are included in both GAMESS-UK and Gamess, the input file structure
differs a lot, and GAMESS-UK is much more similar to NWChem. The following structure is
easier to follow because it has less density and more straightforward namelists. Avogadro
will generate a .in file for you depending on what options on the GUI you choose. Your
screen should look something like this:

63

There are two symbols that signal the type of information that will follow - ! and $. ! is
used for commenting wherever you like in the input deck, and $ signals a namelist. All
namelists must be closed using the $END card. Avogadro automatically makes the following
comment:

! File created by the GAMESS Input Deck Generator Plugin for Avogadro

Next, we need to define the basis set completely using the $BASIS namelist. Below,
the classical 6-31G(2d,p) has been defined by its’ composition. Instead of having one
keyword for that, in gamess, you can build your functions yourselves. Thus, a 7-31G(2d,p)
could just as easily be created. Below, we have a split-valence basis set, as developed by
John Pople. The first number represents the number of gaussian core orbital basis functions
(NGAUSS=6), while the second and third numbers represents how many basis functions are
used for the valence orbitals respectively (constructed with double-zeta valence). For
triple-zeta, you simply add another number. This is done using the GBASIS=N31 keyword.
For triple valence, use the GBASIS=TZV keyword. Lastly, to add d or p polarization
functions, NDFUNC=2 and NPFUNC=1 are used in this case. DIFFSP=.TRUE. adds diffuse
p-functions. All of these keywords can get complicated really fast, but the following basis set
should work in most cases:

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=2 NPFUNC=1 $END

Then, you can optionally add a Polarizable continuum model, where the solvent can
be set to behave in ways similar to, for example water. This is added by the $PCM namelist.
Do not forget to close the namelist with the $END card.

$PCM SOLVNT=WATER $END

Next is the $CONTRL list. This is the most important namelist, since it defines your
calculation in terms of what you want to do (RUNTYP), what level of theory you would like to
use, and overall system options, for example charge. Below, I have used SCFTYP=RHF, i.e.
with a restricted SCF calculation with regards to spin; however, despite the RHF option, you
can still use the DFTTYP to specify a DFT functional, i.e. you are still performing a DFT
calculation. Here, I used a B3LYP functional. The last keyword can be good to use,
ICHARG=2, which essentially specifies the total number of electrons. It is easier to do this in
relation to the number of protons (which elements you have used in your system), than to
define the absolute number of electrons. ICHARG is therefore simply the total charge of the
system. For other systems than singlets, you need to specify your multiplicity with the
MULT=N, where N is an integer. Again, you have to include the $END card.

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE DFTTYP=B3LYP ICHARG=2 $END

The statpt controls the iterative options, for example step length and number of steps. Often
times, if your geometry doesn’t change and the energy has converged, you have an
adequate number of steps. I wouldn’t recommend straying much from these options.

64

$STATPT OPTTOL=0.0001 NSTEP=20 $END

Now comes the part that Avogadro does the best. The $DATA list specifies the geometry of
your system, i.e. all of your coordinates for all of your atoms. The ​Title ​and ​C1​ options
should not be changed since they are trivial. Then, there’s a 5-column table. The columns
contain information about the (1) Atom type (determines the number of protons in your
system, and indirectly through the ICHARG option, the number of electrons), (2) atom mass
(can be changed for isotopes) (3) X-coordinate, (4) Y-coordinate and lastly, (5) Z-coordinate.
Again, $END is needed.

$DATA
Title
C1
O 8.0 14.70163 -5.22234 -3.01771
S 16.0 14.72202 -3.89024 -1.94780
O 8.0 16.08787 -3.00082 -2.46899
C 6.0 7.29504 2.78779 2.98611
C 6.0 8.38202 2.18983 3.56762
N 7.0 7.61563 3.04200 1.68572
C 6.0 8.87564 2.64499 1.43180
N 7.0 9.33579 2.10700 2.57469
Cu 29.0 6.41195 3.81391 0.23443
O 8.0 -10.37893 1.07192 -2.73613
H 1.0 15.36987 -5.63802 -0.13679
H 1.0 16.04435 -5.26948 2.74964
H 1.0 16.27901 -1.87660 5.21148
H 1.0 17.30639 -3.28855 5.05026
H 1.0 15.61337 -3.47926 5.47351
$END

4. Methods

To solve the schrödinger equation for the wavefunction, you need to find the

Hamiltonian, whose eigenvalues are the energies that composes our system. First of all, we
use the Born-Oppenheimer approximation, which assumes that, due to the large mass
difference between electrons and protons, the wavefunction of the proton will be essentially
static for the protons in relation to the electrons. Thus, we assume that we can freeze the
position of the protons and treat them as point charges in relation to the electrons. Also,
some calculations utilize the Tamm-Dancoff approximation, for example time dependant DFT
frequency calculations.

In this case of the frozen core approximation, the form of our Hamiltonian for every
electron has nuclear-electron attraction energy and kinetic energy. It also has a correlation
exchange term. If you have ever had a lecture in the electronic Hamiltonian matrix, then you
know that the electronic correlation is a problem. Since we don’t know the exact electronic
geometry (the electrons are delocalized in their orbitals), we cannot know at which distances

65

the electrons interact, and thereby we cannot know the forces on each electron, and thus the
potential energy of each electron in correlation to each other. Therefore, approximations to
gauge the exchange correlation energy have to be in place. A common misconception is that
the exchange correlation energy is the biggest contributing factor to the total energy of the
system, but in fact, it is often less than a few percent of the total energy. For precise
calculations and systems where you have steric clashes, electron-electron interactions have
to be taken into consideration.

4.1. HF

HF, or Hartree-Fock, is a so called level of theory. Level of theory in a quantum
chemical sense refers to how accurate we are choosing to describe our system. These are
the general approximations or methods that we use to find the wavefunction. Since we know
that the eigenvectors of the Hamiltonian form a non-interacting set of basis vectors
(attributes of a hermitian matrix), we can diagonalise the matrix in order to find its
eigenvectors. The eigenvalues of the Hamiltonian are of course the energies of the
corresponding eigenvectors (incidentally, these eigenvectors correspond to the
wavefunction). In Hartree-Fock, we choose this set as a set of non-interacting orbitals, and
we can therefore ignore the electronic exchange contribution, i.e. our electronic matrix is
diagonal. (The study of the off-diagonal elements - called the coupling elements - plays a
huge role in charge transfer reactions, and can be seen as the geometric overlap of the
donor and acceptor spin-orbitals).

The Hartree-Fock method, as mentioned, uses the slater determinant, which is a
mathematical construct that is based on the constraint of antisymmetry in electronic systems.
If the slater determinant is too close to zero, the program usually warns for degeneracy.
Since electron degeneracy is a phenomenon that almost exclusively happens in very dense
stars and systems under high pressure and very tight density, this is usually an error with the
specified system. Often times, it points to a wrong geometry, so tweaking the initial
coordinates will often lead to a better conditioned, solvable system.

To summarize, Hartree-Fock is a method where the exchange correlation term is
zero. This is electron-electron repulsion energy, so excluding it yields a guess that is most of
the time lower than the expected (Sometimes, you can have very diffuse occupied-virtual
orbital interactions which lowers the energy of this term significantly). Underestimating the
energy of a system by not accounting for electron-electron repulsion energy can be very
inaccurate, especially for systems under 100 atoms, and should never be used.

4.2. DFT

Density Functional Theory (DFT) is the leading method in quantum chemistry. The
main point of this approach is that you can, theoretically, model your system to infinite
accuracy, i.e. the Hamiltonian is exact for a multiple-electron system, however the methods
used to solve the resulting differential equations come with their own approximations.
Solving these equations exactly will give you an exact model. The exchange correlation term
in this case is a functional of the electron density within a certain region (see the LDA and
GGA approximations to this theory), that takes the electron repulsion from the true electron
density.

These equations are called the Kohn-Sham equations, and build on the idea of
having a fictitious system with a series of fictitious electrons that are non-interacting, but

66

placed so that the charge density results in the exact electron density. However,
computationally, these methods can become very costly depending on the functional that we
use. Therefore, we can used local density approximations (LDA) or generalized gradient
approximations (GGA).

4.2.1. LDA

The local density approximation treats the local electron density as a uniform electron

gas, which affects a point charge in it. This approximation does not consider the gradient of
the charge distribution; however, empirically, we can see that it holds well for slowly varying
gradients. This is thus not good for polarized systems, or multi-molecular systems where
long range interactions such as hydrogen bonds, ionic or dipole interactions. Exchange
correlation functionals Ceperly-Alder 1980 Quantum Monte Carlo simulation, or Chachiyo
2016. For a list of all functionals, please visit the GAMESS homepage.

4.2.2. GGA

Generalized Gradient Approximation, on the other hand, also takes the gradient of
the electronic density into consideration, i.e. the Exchange correlation is a function of both
the position and electronic charge gradient. This means that we can take not only the point
value of the electronic density at every position, but also take into consideration the
immediate local, and global electronic density gradient. This eliminates most of the problems
with simple LDA. Common problems include overestimation of the gradient contribution, but
can be normalised by a linear combination of other exchange correlation terms. This is
where we enter the realm of very good Hybrid Functionals. Again, a quick visit to the
GAMESS manual or homepage for the DFT functionals sections will suffice.

4.2.3. Hybrid Functionals

There are also hybrid functionals, that, as you would guess, are a hybrid between
different functionals. The most widely used functionals are of course found under this
category, since they can encompass any wanted property, at the cost of computational time.
CAM-B3LYP or PBE0 for long range, and regular B3LYP for ordinary systems where orbitals
are localised within the same molecule, are very good functionals that should work in all
cases.

4.3. SCF

The very concept of the schrödinger equation involves the solving of a differential
equation. For this, we employ iterative numerical methods to solve the system. When it is
solved, we say that it is ​converged​. A converged system means that it is self-consistent, i.e.
that the recursive functional does not change any of its properties or values. This means
that, in the case of DFT, the density is a function of the density. When the difference in the
value for each iteration has decreased under the convergence threshold, the system is
considered to be solved.

There are several convergence schemes, and they do not always work. The take
home message is that if your initial guess is good enough, it will most likely converge. The
steepest-descent and Newton-Raphson quadratic schemes or Direct Inversion of Iterative

67

Subspace (DIIS) usually don’t differ too much in whether they succeed to converge the
system or not, however sometimes they differ greatly in speed. I would recommend trying
SCF=QC, which is a quadratic convergence scheme that works for systems with large initial
energy gradients, i.e. if you have steric clashes or positioned the system so that there are
very strained bonds or anti-binding Molecular orbitals present in the initial Huckel guess.
With that said, we can smoothly venture into the land of initial guesses for molecular orbitals.

4.4. Initial MO Guess

The initial guess of any quantum mechanical is essential for how fast and if the
calculation will converge. If the initial guess is too far away from the SCF, it is crucial to
condition the solution matrix to fit your system better. In geometric terms, it means that, while
the coordinates of the atomic cores are static (Born-Oppenheimer approximation), the
electronic density differs. Frankly, a good initial guess of the electron density leads to a
system that is easier to solve. It is from this electron density that the system will be evolved,
instead of trying a new electron density ab initio for every iteration. The energy gradient of
the system will then be evaluated, and you can then gauge how to evolve the system to a
lower energy (for energy optimization), or evolve the system in the time domain (excitation
and electron transfer theory). The standard initial guess in GAMESS is the Huckel guess,
which is an electronic density constructed by the individual atomic orbitals of every atom.
This is of course a wide approximation, but usually suffices for most calculations.

The problem arises when you have several different subsequent runs, and you would
like to carry over information about Molecular orbitals from run to run. Then, you have to
import the molecular orbitals from a previous run, given by the .vec file. It contains the vector
information about the molecular orbitals. This is done by importing the vector file using the
GUESS=MOREAD keyword and the separate $VEC name list (see GAMESS manual, the
structure of this list changes quite a bit with every rendition).
5. Level of theory

As mentioned previously, the level of theory does not always describe how accurately
a problem is solved, but rather how fast/slow the method can reach a SCF (self-consistent
field, see previous section for more information). This means that it is important to make the
theory ​fit​ your system economically, instead of using the highest possible level of theory. Not
only does it decrease your computational time, but you will model your system with higher
accuracy. Methods of a high level of theory sometimes make approximations not very
suitable in your specific case, however “lighter theory” models maybe don’t. Therefore,
having good control over what you are doing and how you attempt to solve your problem is
key modelling accurately.

5.1. Basis Sets

Basis sets are a way of describing the Molecular Orbitals in gaussian function. A

gaussian function contains several different constants that can be fitted to the behaviour of
the molecular spin orbital, in wavefunction form (i.e. before we take the norm and square the
result). The form of this gaussian function (a gaussian type function, for any mathematically
illiterate, is a function on the form , where C is independent of r). The following(r)f eC −kr2
equation gives all the parameters that can be fitted:

68

ymz eG = xl n −r2

Since it is not shifted on the r-axis, it is symmetrical

along it. This means the peak of the wavefunction is at the
centre, commonly only associated with the classical 1s
orbital. Evidently, we need a more sophisticated basis.
Therefore, we can add several gaussian functions with
multiple different peaks, and thus, we can represent our
molecular orbitals more accurately. This approach is
represented by the G suffix, for Gaussian functions. Most
commonly, 6-31G is used, i.e. 6 G-functions for atomic
orbitals, and double zeta valence with 1 and 3 G-functions
respectively. However, on this form, you can simply decrease this peak, however it will
obviously still be somewhat symmetric. You need polarization function to correct for those
effect. For polarization, I would recommend the correlation-consistent polarized functions
basis sets called cc-pVNZ, where N=D,T,4,5,6, and represents the number of zeta valence
functions (D is double, T is triple). Below is a list of usable basis functions (they are not that
many).

STO-3G - Basically just three gaussian function linearly combined. Never use this since its’
to crude to describe molecular orbitals. Works fairly well for atomic systems.

6-31G - This used to be the state of the art basic basis set, before correlation consistent
functions came into the picture. It still works reasonably well for most systems, and is a good
low-cost basis set. I personally always start with this basis set and see how well I can
reproduce observed variables with this set.

6-311G - This basis set is of course a triple zeta valence basis set, and can be useful for
heavier atoms, however, if you have heavier atoms such as metals or even metals
complexed with histidine or other heme-like groups, you need polarization functions, and the
additional zeta valence function will not help you significantly.

6-31G++ - The plus signs on the regular 6-31G basis set represents two polarization
function, one for d and one for p orbitals. This is very useful for large molecules with
polarized bonds, and breaks the geometric symmetry present in STO-3G basis sets.

cc-pVDZ - This state of the art (as of 2018) class of basis sets are very important for the
development of basis sets in quantum chemistry. They are often referred to as producing
true orbital geometries and energies, as opposed to 6-31G, that often gets the energy right.
This is not very surprising considering that the exchange correlation term that depends on
the density in DFT does not affect the energy that much, however the SCF while be driven to
the wrong solution with 6-31G.

aug-cc-pVTZ - This basis set exemplifies what you can do with the cc-pXXX basis sets. We
can add augmented functions to increase the importance of long-range interactions in, for

69

example very polarized, hydrogen bonding, or intermolecular systems. There are a lot of
other basis sets, but I would recommend to have a closer look at these ones if you want to
indulge in other, less mainstream basis sets.

5.2. Functionals
As I mentioned before, DFT functionals are essential in solving complex systems

accurately, where an accurate description of the electron density functional is due. In density
functional theory (DFT), the Exchange correlation term is a function of the electron density
functional. This garners a complex recursive function, where the electron density (via the
norm of the wavefunction squared) depends on the electron density (that results from the
functional). The form of this functional determines how well the system can be solved. An
all-encompassing functional (e.g. infinitely expanded taylor polynomial) does not exist, so we
have to fit the functional with the system we are using.

There are a number of different functionals (exclusively hybrid functionals) that work
with varied accuracy on different systems. Below I have listed a couple of functionals and a
short description about when to use them. They are described by the
DFTTYP=<dft_functional>​ keyword

B3LYP - the B3LYP functional is one of the most used and most successful density

functionals for DFT. Basically, it is a very good all-round functional, and should be used
initially in any case.

CAM-B3LYP - Basically, this is a functional with long range correction (CAM). This
should only be used when values from PBE0 don’t give good orbitals, but B3LYP also fails to
capture the essential long range interaction. For charge transfer, I would highly recommend
this or the PBE0 functional.

PBE0 - Finally, PBE0 is very successful in gauging long distance behaviour, and can

be used in tandem with Polarizable continuum models (PCM, see the section on input
structure for more information). However, not all interactions are captured good here either
(e.g. for a system with important pi-cation interactions, for which you'll need M06 class of
functionals or those with D3 correction)

B97 - A less costly version and precursor of B3LYP, and usually gives good results.

N12 - If you don’t want to use hybridized functionals to explore how GGA applies to

your system, you can use N12. This is however, only recommended for program analysis
and if you want to compare how GGA holds up to hybridized (nearly exact) functionals in
different cases.

6. Workflow

6.1. Geometry optimization

The first step of any QM run is a geometry optimization, to relax the system from
local energy maxima. At every iteration, we need to converge to a complete SCF, and
calculate the energy gradient with respect to the core geometry. Then, we rearrange the

70

atoms, to create a new “initial” geometry guess and see how the energy changes. This is
done automatically by the geometric optimization routine, specified in the RUNTYP keyword.
The following workflow is typically used for any run, only that the geometry is very important.
Often times, it is in the geometry change that you can see if the system has been modelled
correctly - if you begin close to the true geometry (say, started from NMR data or crystal
structure), the geometry should not change significantly. For example, when you have

delocalised, planar
𝜋-systems, and have not
used the appropriate
model, the planar initial
guess will condense and
crumble into an sp3-state.
In this way, you can
usually see what part of
the modeled system you
need to change by
viewing toward what
solution the calculation
tends to, in a similar
fashion to the previous
example. I have attached
a picture where you can
see the general workflow
for this step. An important
note is that if your

geometry changes drastically in the beginning of the simulation, freezing some central atoms
that you don’t want to move too much can prove very useful. For more information on how to
do this, see the section about IFREEZ(1) in the next section. Just be careful that you do not
constrain the system so much so that movement is completely disabled (for example the
peripheral atoms of an organometallic-complex). It should be noted that this is rarely the first
solution to convergence or faulty geometry problems.

6.2. Activation energy
For activation

energy, we need two
basic steps - first a
scan for a saddle point
(we can do this in
GAMESS manually
using ifreeze for a
number of geometry
optimization), and then
a calculation of the
activational frequency
for this complex, which
can then be correlated

71

to the transition state complex and the total activation energy of the complex itself. In the
attached picture there is a complete flowchart for the initial procedure (finding the transition
state geometry, i.e. the saddle point along the reaction coordinate). For every step of
geometry optimization the complete workflow of the previous section needs to be done.

There are two very important input files that you have to construct. One is for the
geometric optimization with a freezed constraint, and one is where the activation frequency
is calculated.

The saddle point calculation is done by manually changing the position of the
exchanged atom or molecule (for example in diels-alder reactions), and freezing the moved
atom or complex at a fixed distance or cartesian position. If you would like to freeze a
distance (i.e. a bond (even though there may not be one in the visualisation program)) switch
from cartesian input coordinates to ZMAT format. This produces a z-matrix that contains the
connecting information between atoms, without any absolute movement in cartesian space.
Below, I have included the complete input information provided by GAMESS on the matter.

IFREEZ = array of coordinates to freeze. These may be
 internal or Cartesian coordinates. For example,
 IFREEZ(1)=1,3 freezes the two bond lengths in
 the $ZMAT example, which was for a triatomic
 $CONTRL NZVAR=3 $END
 $ZMAT IZMAT(1)=1,1,2, 2,1,2,3, 1,2,3 $END
 while optimizing the angle.

 If NZVAR=0, so that this value applies to the
 Cartesian coordinates instead, the input of
 IFREEZ(1)=4,8 means to freeze the x coordinate
 of the 2nd and y coordinate of the 3rd atom.

 See also IFZMAT and FVALUE in $ZMAT, and IFCART
 below, as IFREEZ does not apply to DLC internals.

 In a numerical Hessian run, IFREEZ specifies
 Cartesian displacements to be skipped for a
 Partial Hessian Analysis. IFREEZ can pertain to
 EFP particles, but only during RUNTYP=HESSIAN,
 where the 6 translational and rotational degrees
 of freedom of each EFP come AFTER the QM atom
 coordinates. For more information:
 J.D.Head, Int.J.Quantum Chem. 65, 827, 1997
 H.Li, J.H.Jensen
 Theoret. Chem. Acc. 107, 211-219(2002)

The activation frequency can be calculated a bit easier, by simply changing the
RUNTYP keyword to RUNTYP=IRC, which gives the infrared frequencies. Opening this in
visualisation program will give you a visual representation of about 100 different frequencies,
depending on how many bonds your system contains.

72

6.3. Electron transfer using TDDFT
I would not recommend that you perform this step. If, however, an electron transfer

reaction is crucial to your modelling, I will not stop you. Even if you have a “simple”
HOMO-LUMO one electron excitation or transfer, the dynamic properties of the orbitals when
occupied or virtual changes the energy of the system. This means that inferring excitation
energy information from the HOMO-LUMO energy gap straight from a geometric optimization
run will not give you the appropriate accuracy and will sometimes differ by 2eV even though
you have a completely accurate electron density. (With the correct geometry but wrong
orbital conformation, I got an error of 20eV between the HOMO-LUMO when the correct
value with cc-pV5Z TDDFT was 0.1eV. That’s an error of 20000%.) I would also not use
GAMESS for this, as mulliken charges and other interesting properties (for example
RT-TDDFT) can be calculated using the NWChem package. Either way, if you have more
than 10 atoms, consider finding a supercomputer to do this for you.

To perform a TDDFT excitation calculation, the TDDFT variable has to be specified to
EXCITE (i.e. TDDFT=EXCITE) in the $CONTRL name list. Then, you can include a separate
$TDDFT name list for further specifications. The following input is usually what you will need:

$TDDFT IROOT=1 NSTATE=10 MULT=3 $END

The IROOT=1 option refers to the root state, i.e. the state that should be

geometrically optimized. This can sometimes be used to find the reorganizational energy of
the reaction, according to Marcus theory for electron transfer.

The NSTATE=10 option gives the number of excited states to be investigated, i.e.
which excitation frequencies to be calculated. They are, of course, ordered by energy. Again,
don’t forget to include the $END card.

The MULT keyword is only available if a closed shell Hartree-fock method has been
specified by SCFTYP in the $CONTRL name list. The multiplicity of a singly excited state
often is either 1 or 3. (always 3 for one electron charge separation, i.e. 2 unpaired electrons,
one in the donor and one in the acceptor orbital, if the ground state has MULT=1).

6.4. QM parametrization
Sometimes, an organic molecule or a non standard residue is included by the user or

in the initial crystal structure. We have to perform a so-called manual parametrization of this
molecule in order for the Molecular Dynamics simulation to run properly. This is quite a
time-consuming step, and it can sometimes be very difficult to extract information after
running the simulation, since we are most of the time doing this completely manually.

There is routine called MCPB.py that one can use, however, sometimes, weird
naming issues can come up (no atom can have an atom name over 3 letters and all atoms
within a parametrization have to be unique, as does the individual residue names). Solving
naming problems is definitely not as trivial as it sounds, and it can take days to find what has
gone wrong. Also, it only works with certain file formats, so they have to be generated from
the GAMESS, or preferably Gaussian output files. For more information about this, I would
refer you to the Seminario method (by Joe Seminario) and the MCPB.py routine in
ambertools.

73

In principal, a QM parametrization is very easy to conduct, and for experienced
GAMESS or Gaussian users can be done in two consecutive steps, however, we still need
our runs to converge, and the results to be reasonable. For larger structures that are
strained, and can involve bond breaking, this approach can come with inaccuracies. If you
have closed off your system reasonably well, this should not be a problem. If your system is
too large to cut off in this fashion, consider using QM/MM (see the last section for more
information on this)

The first step is to perform a geometry optimization. In GAMESS, all the data on
every bond will be printed in the output files. From this, you can infer important equilibrium
data (See the section on frcmod and mol2). Essentially, dihedral angles, bond angles and
bond lengths are all calculated here. If you are having trouble navigating the huge output file,
visualising this data in avogadro or MOLDEN could be easier, and then measuring these
parameters. Then, you can enter them into the frcmod file as described in the frcmod and
mol2 section. . Also, van der Waals parameters can be inferred from the optimized
geometry, (both attractive and repulsive).

For force constants, we need to perform a frequency calculation. See the paragrah
above for more information of how to do that step. From the output file, we can get all the
force constants for every bond with reasonable energy. For smaller molecules, every bond
that should be treated as such should have its own frequency in both the direction of the
bond, the angle of the bond and the dihedral angle (spinning single bonds). It is vital to not
forget that, while a bond may not be covalent, even a long distance interaction counts as a
bond in the frcmod file (only that the equilibrium bond distance is larger and the force
constant smaller, but it is still significant data).

74

AMBER QM/MM

The QM/MM module in ambertools is a very useful tool if you need to
simulate a large system over time or a simple energy minimization,
however need to account for some quantum mechanical effects. In this
case, we can specify a small region for QM calculation, and then treat
the rest of the atoms using MM-methods. This is much more effective
than using PCM or solvent surface models since we can include the
charge induced effect from every atom within the cutoff, and therefore,
there is no need to tailor a PCM to suit the inner protein environment.
For this chapter, it is required to have read the ​QM in GAMESS ​and ​MD
using Sander​ chapters.

75

1. Introduction
Quantum mechanical/molecular mechanical simulations (QM/MM simulations) are

often done where a large biomolecule (a protein, enzyme or nucleic acid) is of interest,
however, while all interactions are important, there are a few interactions that cannot be
modelled classically, and we have to employ quantum mechanical models instead. Of
course, one could simply take the small QM region and perform a QM calculation on it. While
it captures the essentials within the region of interest, it fails to capture interaction between
this and the rest of the biomolecule, that tends to be quite large. Often times, polarization
effects and dipole-dipole interactions can be captured quite well thanks to QM/MM. A parallel
between the interface between the QM and MM regions and the Polarizable Continuum
model (PCM, see GAMESS chapter for more information) can be drawn. In the same way
that the solvent or environment of a molecule can be modelled implicitly (i.e. without the
atoms), we model it here explicitly, but with simplifications to a classical level. Often times,
the orbital configuration can change drastically in QM/MM. Also, integration twice of the
forces in the time domain can give us the time-dependant evolution of a system, similar to
the evolution of a classically modelled system in MD (Molecular Dynamics).

QM/MM simulations are great for characterization of reaction, and only including the
chemically or photophysically active site (for enzymes or affinity proteins chemically active
sites, and for fluorophores, photophysical activity) Since we change the positioning of the
QM cores along the simulation, we can actually simulate a whole reaction, if it happens to
satisfy the energetic evolution of a system (starting in the transition state geometry should
probably make the system relax into the products or the reactants). Since we can change
the electronic configuration using the QM functionality, we can take bond breakage and
electronic excitation into consideration easier. A good initial guess is crucial here, and simply
hoping for the reaction to occur will not suffice.

2. Method

The QM/MM method revolves around the merging of the two most powerful
molecular modelling methods - one for its scope and one for its accuracy in modelling
electronic configuration - and as a result, we get the best of both worlds. On paper, this
sounds terrific; however in reality, there are a few issues that are related to how we actually
perform these calculations.

First of all, we have the issue of that once we have selected our QM-region, how we
will treat it in the QM-program, since if one QM and one MM atom are connected covalently,
the multiplicity of the QM atom would change since we are breaking a bond. Thus, we need
to “cap” these bonds using virtual hydrogens. It is therefore of high importance that we never
break a bond that is highly polarized or contributes to the electronic configuration
significantly in any other way than a bond to an H would. The capping can be followed
through the log files of the external QM program, since it lists all the atoms, and marks the
virtual hydrogens with an asterisk (*). The QM/MM interface isn’t a hard surface, which
means that sometimes, the electronic orbitals can stretch further out than the atomic
QM-region and onto MM-atoms (that are not considered as nuclei in the QM calculation) and
therefore, peripheral orbitals can often not be trusted because of steric clashes and other
electronic interactions. If this is the case, include a larger amount of atoms in the QM treated
region. As I mentioned before, the choice for the QM region is absolutely crucial for the

76

success of the simulation. One should also remember that for many features of
conformational analysis, a good MM force field may be better than a semiempirical or DFTB
quantum description. In choosing the QM/MM boundary, it is better to cut non-polar bonds
(such as C-C single bonds) than to cut unsaturated or polar bonds.

Secondly, the total energy contribution from the QM region can be added onto the
total MM energy, however, the nonbonded contributions to the Hamiltonian of the QM region
from MM atoms has to be considered as well. This is where the “solvent” or PCM effect
comes into place. By defining nonbonded van der waals and charge parameters for the MM
atoms, we can create a highly accurate electrostatic surface for the QM region. This is much
more accurate than overall solvent models, since they encapsulate non-globular structures
poorly and can of course not take all minute differences in charge and van der waals radii
that are present within a protein. This effect alone changed my HOMO-LUMO gap in one
instance from 13eV to 0.1. The reason for such a huge difference is because of that the
program arrived at a completely different state altogether. These nonbonded terms also
affect the environment, as the MM atoms will be affected by van der waals parameters
calculated internally in amber (similar to the MCPB.py routine, see the section on QM in
GAMESS for more information). Also, the energy gradient of the system also tells us how
strained the QM region is, and affects the forces and total energy gradient of the QM/MM
system. This affects how the system is iterated. In short, while we do not include the full
atoms of the MM region in the QM region, we need to include all of the nonbonded
interactions, which is where we essentially get our high accuracy from.

Lastly, we need to connect how the QM program iterates to form a SCF to how that is
handled by the MM part, and how we can actually simulate a system through time. In a
normal MD simulation, the energy gradient, or forces, are calculated for the whole system,
and then integrated over dt, which is specified in the AMBER .in file. This means that we
have to calculate the energy gradient of the QM region to perform an iteration in the “MD”
(production) simulation. We cannot, however perform a geometry optimization, as I have so
frequently preached about in the previous chapter, because if we begin to move the nuclei of
the QM region based on the QM calculations only, they tend to drift outwards due to the
electron-nucleic attractions from the van der waals parameters. Therefore, we fix our atomic
positions during the QM calculation, i.e. we only perform one SCF iteration (we find the
solution to the schrödinger equation to find the current electronic density). The energy
gradient is redundant within the QM calculation, however is needed later, because then we
perform our MD iteration with the usual settings. This means that, compared to MD, this
takes a lot longer because of the need of doing a complete SCF for every step, so beware of
what level of theory you are using since the calculations can get quite lengthy.

3. QM/MM interface
As mentioned, QM/MM can be performed using AMBER. For this, we use the regular

sander .in files. For every step of a standard MD simulation, (minimization, heating, density,
equilibration and production), we can, in addition to the regular keywords in the &cntrl
namelist, add a ifqnt= keyword. Below, you can see an example of the &cntrl namelist with
the added ifqnt=1 keyword. In this case, this is a production simulation, which is the final
step of the MD simulation, where the following happens;

Firstly, we are not performing a minimization, so imin=0, and there are no need for
restraints, so ntr=0. These two options are generally needed for minimization runs. Further,

77

we have a few pressure conditions (1 atm, specified by pres0, and taup=2.0) we are cutting
interactions over 7.0 Å. This only applies to the MM parameters, not to the QM region, which
is completely separate from this (of course internally, because the cutoff from the MM
nonbonded terms still apply to the nonbonded terms in the Hamiltonian for the QM system).
For bigger systems with many charges, use cut=20. We are doing this at about 28 ​o​C, or
exactly 300K, so tempi=300.0 and temp0 is also 300.0. nstlim and dt=0.002 define the length
of the simulation, and the ntpr, ntwx, ntwr and ntxo simply define printing options of the
simulation.

Production simulation
&cntrl
 imin = 0, irest = 1, ntx = 7,
 ntb = 2, pres0 = 1.0, ntp = 1,
 taup = 2.0,
 cut = 7.0, ntr = 0,
 ntc = 2, ntf = 2,
 tempi=300.0, temp0 = 300.0,
 ntt = 3, gamma_ln = 2.0,
 nstlim = 1000, dt = 0.002,ioutfm=1,
 ntpr = 1, ntwx = 1, ntwr = 1, ntxo = 2, ifqnt=1,
/

Lastly, we have the ifqnt keyword. I requires an additional namelist, specifically the
&qmmm ​namelist, it contains information about both the overall information of the qm region,
first specifying the actual qm region with the regular AMBER syntax (see the analysis
chapter for more information on this). The keyword for this is qmmask=’’. In the example
below, I have selected a number of residues ranging from 63 to 506. It is important to
visually inspect your structure so that the qm region is consistent and self interacting (i.e. I
would advise against having two separate qm regions in the same calculation, because they
may interact nonetheless), and also to select the correct residues. Usually, it is much easier
to select residues, however a more accurate cutoff for the qm region can be achieved using
the selection for atoms.

Another important keyword is what defines our level of theory (qm_theory=’’). Most of
the internal quantum mechanical Hamiltonians within AMBER is semi-empirical, which
means that they are conditioned to work best under protein like conditions and similar
environments. Involving complicated organometallic complexes gravely complicates this
picture. The available hamiltonians are, as stated in the amber18 reference manual; Options
are AM1, RM1, MNDO, PM3-PDDG, MNDO-PDDG, PM3-CARB1, MNDO/d (same as
MNDOD), AM1/d (same as AM1D), PM6, DFTB2 (same as DFTB), and
DFTB3. The dispersion correction can be switched on for AM1 and PM6 by choosing
AM1-D* and PM6-D, respectively. The dispersion and hydrogen bond correction will be
applied for AM1-DH+ and PM6-DH+. I would recommend PM6-DH+ if you absolutely do not
want to perform an advanced qmmm calculation in an external program. For simple
calculations, the standard PM3 suffices. When an internal hamiltonian is chosen, you can
specify a couple of more options, such as the qmshake=1, qm_ewald=1 and qm_pme=1,
which is thermodynamic properties of the system and particle mesh ewald options.

78

&qmmm
 qmmask=':63 :66 :109 :111 :162 :206 :265 :332 :334 :337 :338 :395 :398 :400 :452 :453
:454 :458 :500 :501 :503 :504 :505 :506',
 qmcharge=6,
 qm_theory='EXTERN',
 ! qmshake=1,
 ! qm_ewald=1
 ! qm_pme=1
/

Above was an example of where I have set the qm_theory to ‘EXTERN’, which
means that an external program conducts the qm part of the calculation. Then, we cannot
have any of the input options that I have marked as comments (using the ! sign). Upon
inclusion of the qm_theory=‘EXTERN’ option, we need to include an additional namelist -
&gau, which in the case below is for any version of Gaussian. We want to do this with &gms,
which is for GAMESS. Here, we need to define the level of theory according to the internal
syntax within GAMESS, or whatever qm program you are using. I have left this challenge to
the reader, as a final conclusion of the most interesting hybrid method of molecular
modelling.

&gau
 basis=6-31G**(d,p)
 method=B3LYP
 mem=40GB
/

