CONNECT WITH US
[1/8] - Dr. Foo Jee Loon
Dr. Foo Jee Loon is a senior research fellow from the Department of Biochemistry at the NUS Yong Yoo Lin School of Medicine. We approached him for his expertise in engineering microbes for biochemical production. He reviewed the metabolic pathway that we were proposing and determined that controlling the flux of intermediates was key to allowing our engineered cells to switch between different product pathways.
He noted that the project would be complex due to the large number of enzymes involved. Because of this, he warned us of the large amount of characterization work that would be required if the functional data on these enzymes were unavailable. He advised us to start by engineering a bacterium that could perform the second half of the pathway using one the intermediates as feedstock. At the same time, we could design an efficient and sensitive method to control the expression of key genes to influence the flux of intermediates.
Some of the other tips he gave us included the use of monoculture rather than polyculture due to better mass transfer characteristics. He also introduced us to the concept of bioremediation, which would further enhance the environmental impact of our project.
Dr. Foo Jee Loon is a senior research fellow from the Department of Biochemistry at the NUS Yong Yoo Lin School of Medicine. We approached him for his expertise in engineering microbes for biochemical production. He reviewed the metabolic pathway that we were proposing and determined that controlling the flux of intermediates was key to allowing our engineered cells to switch between different product pathways.
He noted that the project would be complex due to the large number of enzymes involved. Because of this, he warned us of the large amount of characterization work that would be required if the functional data on these enzymes were unavailable. He advised us to start by engineering a bacterium that could perform the second half of the pathway using one the intermediates as feedstock. At the same time, we could design an efficient and sensitive method to control the expression of key genes to influence the flux of intermediates.
Some of the other tips he gave us included the use of monoculture rather than polyculture due to better mass transfer characteristics. He also introduced us to the concept of bioremediation, which would further enhance the environmental impact of our project.
[2/8] - Mr. Holger Schlaefke
Mr Holger Schlaefke is the Global Marketing Manager for Cellulosic Dyes at Huntsman Textiles Effects. With an impressive 21 years of experience in the dyeing and textile industry under his belt, he was well equipped for us to approach to find out more about what we should consider when designing a dye. It helped that Mr Schlaefke was warmly hospitable and accommodating, and extremely forthcoming with his knowledge about dyes.
The interview validated the need for more sustainable dyeing technologies to reduce the water pollution caused by the textile industry, and helped us affirm the key aspects of the problem. We also found the answers we sought! From an industry perspective, we now know that we should take into account how dye manufacturers need to be agile in response to the fashion industry’s ever-changing demands for the trendiest colours of the season, and the requirements our dye must fulfill to be considered eco-friendly, among others.
On the topic of natural versus sustainable dyes, we learned that the industry is keener on using synthetic dyes rather than natural dyes even though natural dyes are considered more environmentally friendly. This is because of the industry’s perception that firstly, synthetic dyes are superior to natural dyes in terms of wear resistance, secondly, producing synthetic dyes is less complicated and time consuming, and finally, companies producing synthetic dyes would have to completely change their machinery and infrastructure. This was why he foresees that it will be difficult to persuade textile producers and other major stakeholders to adopt new, potentially industry-disrupting solutions involving natural dyes.
We then shared our vision of producing natural dyes biosynthetically, to which he listed important challenges and obstacles to anticipate and overcome should we decide to continue on this path. Furthermore, he suggested that producing primary colours or brighter and bolder colours would be more impressive and would make our solution more attractive to our stakeholders.
At the end of the interview, Mr Holger encouraged us to never give up, and even jestingly reminded us that whatever we do, there was one thing we should never forget - to get a patent for our project!
Mr Holger Schlaefke is the Global Marketing Manager for Cellulosic Dyes at Huntsman Textiles Effects. With an impressive 21 years of experience in the dyeing and textile industry under his belt, he was well equipped for us to approach to find out more about what we should consider when designing a dye. It helped that Mr Schlaefke was warmly hospitable and accommodating, and extremely forthcoming with his knowledge about dyes.
The interview validated the need for more sustainable dyeing technologies to reduce the water pollution caused by the textile industry, and helped us affirm the key aspects of the problem. We also found the answers we sought! From an industry perspective, we now know that we should take into account how dye manufacturers need to be agile in response to the fashion industry’s ever-changing demands for the trendiest colours of the season, and the requirements our dye must fulfill to be considered eco-friendly, among others.
On the topic of natural versus sustainable dyes, we learned that the industry is keener on using synthetic dyes rather than natural dyes even though natural dyes are considered more environmentally friendly. This is because of the industry’s perception that firstly, synthetic dyes are superior to natural dyes in terms of wear resistance, secondly, producing synthetic dyes is less complicated and time consuming, and finally, companies producing synthetic dyes would have to completely change their machinery and infrastructure. This was why he foresees that it will be difficult to persuade textile producers and other major stakeholders to adopt new, potentially industry-disrupting solutions involving natural dyes.
We then shared our vision of producing natural dyes biosynthetically, to which he listed important challenges and obstacles to anticipate and overcome should we decide to continue on this path. Furthermore, he suggested that producing primary colours or brighter and bolder colours would be more impressive and would make our solution more attractive to our stakeholders.
At the end of the interview, Mr Holger encouraged us to never give up, and even jestingly reminded us that whatever we do, there was one thing we should never forget - to get a patent for our project!
[3/8] - Mr. Gerard Talhoff
Mr Gerald is the Global Manufacturing and Supply Chain Vice President of the DyStar Group. His current responsibilities range from managing global manufacturing footprint to supply chain management and even to corporate sustainability. With more than 20 years of experience in the dye industry under his belt, Mr. Gerald was able to impart pearls of wisdom gleaned from his many years of experience to our inquisitive young minds.
During our interview with Mr Gerald, he introduced to us the core tenets driving DyStar’s sustainability initiatives. Central to their thrust was a three-fold approach - reducing the production carbon footprint, ensuring consumer safety by keeping hazardous chemicals out of textiles and dyes used, and striving for biodegradable textiles and materials used for dyeing.
Mr Gerald validated our proposed design, pointing out that balancing environmental friendliness and commercial feasibility would no longer be unfeasible. Instead, co-opting sustainable practices in textile dyeing would become a competitive advantage; governmental agencies around the world are taking tougher actions against environmentally-unfriendly practices and pollution.
When discussing our potential solutions, he anticipated a critical hurdle we would have to overcome: our solution must attain significant yield for it to have a significant impact on the dye market. From his experience, past attempts at producing bio-engineered dyes have failed to become commercially-viable due to their failure to achieve significant yield. This is a potentially disastrous pitfall that we must seek to circumvent.
Besides our solution of producing microbial dyes, Mr Gerald warned us against the production of natural dyes using agricultural biomass as feedstock. The resulting competition between food production and natural dye production would indeed be very unfavourable for. In addition, disposal of used biomass would exacerbate the problem of resource wastage. Adding to his previous point, Mr Gerald taught us that it was imperative to evaluate the entire production process for its eco-friendliness, taking into account energy and water consumption, waste generation, to name a few.
An interesting twist to the end of the interview, Mr Gerald raised the possibility for the obsolescence of dyes in future, as textiles could coloured by virtue of its physical properties, or perhaps the invention of new materials that are not amenable to current dyeing methods. To tie the interview up, before continuing on our journey with synthetic biology, he encouraged us to evaluate bioengineered products around the world critically.
Mr Gerald is the Global Manufacturing and Supply Chain Vice President of the DyStar Group. His current responsibilities range from managing global manufacturing footprint to supply chain management and even to corporate sustainability. With more than 20 years of experience in the dye industry under his belt, Mr. Gerald was able to impart pearls of wisdom gleaned from his many years of experience to our inquisitive young minds.
During our interview with Mr Gerald, he introduced to us the core tenets driving DyStar’s sustainability initiatives. Central to their thrust was a three-fold approach - reducing the production carbon footprint, ensuring consumer safety by keeping hazardous chemicals out of textiles and dyes used, and striving for biodegradable textiles and materials used for dyeing.
Mr Gerald validated our proposed design, pointing out that balancing environmental friendliness and commercial feasibility would no longer be unfeasible. Instead, co-opting sustainable practices in textile dyeing would become a competitive advantage; governmental agencies around the world are taking tougher actions against environmentally-unfriendly practices and pollution.
When discussing our potential solutions, he anticipated a critical hurdle we would have to overcome: our solution must attain significant yield for it to have a significant impact on the dye market. From his experience, past attempts at producing bio-engineered dyes have failed to become commercially-viable due to their failure to achieve significant yield. This is a potentially disastrous pitfall that we must seek to circumvent.
Besides our solution of producing microbial dyes, Mr Gerald warned us against the production of natural dyes using agricultural biomass as feedstock. The resulting competition between food production and natural dye production would indeed be very unfavourable for. In addition, disposal of used biomass would exacerbate the problem of resource wastage. Adding to his previous point, Mr Gerald taught us that it was imperative to evaluate the entire production process for its eco-friendliness, taking into account energy and water consumption, waste generation, to name a few.
An interesting twist to the end of the interview, Mr Gerald raised the possibility for the obsolescence of dyes in future, as textiles could coloured by virtue of its physical properties, or perhaps the invention of new materials that are not amenable to current dyeing methods. To tie the interview up, before continuing on our journey with synthetic biology, he encouraged us to evaluate bioengineered products around the world critically.
[4/8] - Miss Leong Minyi
Miss Leong Minyi, a Fashion Design graduate of the Nanyang Academy of Fine Arts, is the founder of Mai Textile Studio. Her beautiful art and clothes are created using indigo dye and traditional Japanese techniques such as shibori and katazome. As she currently works directly with natural dyes and textiles, we felt that her perspective on our problem would be invaluable.
Having come fresh from a team meeting about the salient points gained from our interview with a representative from the synthetic dye industry, it was interesting to see which were supported by Miss Leong, and on which points did their views diverge. For example, both parties agreed that natural dyes appealed to a niche market in Singapore, and for the most part, consumers are not concerned with the origin of the dye, but rather how it looks on their clothes as well as their bank account statements.
However, Miss Leong was more skeptical about the representative’s recommendations on how natural dyes could be made more appealing to a wider market, so she gave us some suggestions of her own.Miss Leong mentioned that natural dyes could be made more appealing through branding and marketing. Having a narrative behind the brand can evoke emotions in consumers. Furthermore, colour play, cutting and modernization of designs are also essential to appealing to a wider market. For greater public acceptance of bio-manufactured dyes, a narrative on its environmental sustainability is required, in addition to informing consumers on important dye performance indicators (stability, lightfastnest, colurfastness, reliability). She also stated that removing biased preconceptions against “bacteria” products would be helpful.
Miss Leong cautioned us that yellow was not a popular locally worn colour, but was a non-issue compared to the replacement of synthetic dyes. Miss Leong also recommended to focus on the production of synthetic dyes, achieve good colour mixing and produce an array of colours.
Drawing on her experience of working with natural dyes, she taught us much about the different plants we could consider extracting dyes from and creative techniques such as infusing cellulose-based textiles with proteins or tannins to increase the the fabric ability to absorb dyes. We even touched on her deeply moving experience of meeting her idol, the late legendary experimental textile designer Junichi Arai. From this interview, we became aware of even more factors to consider when designing our dye, such as the ratio of water to dye to the weight of the fabric, or how much dye is required to get a specific intensity.
Her artisanal approach has introduced our team to a whole new paradigm, where the inherent flaws of natural dyes are valuable precisely because of their imperfect nature. One criticism of natural dyes is that they are dull and muted. However, during the interview, we learned a secret - because of this, all natural dyes match well with each other. In contrast, synthetic dyes would appear garish.
Miss Leong’s interview was incredibly helpful, yet our task ahead has become even more difficult, because we now have to consider the problem on a more visceral, aesthetic level. But we believe that makes our problem all the more worthwhile to solve.
Miss Leong Minyi, a Fashion Design graduate of the Nanyang Academy of Fine Arts, is the founder of Mai Textile Studio. Her beautiful art and clothes are created using indigo dye and traditional Japanese techniques such as shibori and katazome. As she currently works directly with natural dyes and textiles, we felt that her perspective on our problem would be invaluable.
Having come fresh from a team meeting about the salient points gained from our interview with a representative from the synthetic dye industry, it was interesting to see which were supported by Miss Leong, and on which points did their views diverge. For example, both parties agreed that natural dyes appealed to a niche market in Singapore, and for the most part, consumers are not concerned with the origin of the dye, but rather how it looks on their clothes as well as their bank account statements.
However, Miss Leong was more skeptical about the representative’s recommendations on how natural dyes could be made more appealing to a wider market, so she gave us some suggestions of her own.Miss Leong mentioned that natural dyes could be made more appealing through branding and marketing. Having a narrative behind the brand can evoke emotions in consumers. Furthermore, colour play, cutting and modernization of designs are also essential to appealing to a wider market. For greater public acceptance of bio-manufactured dyes, a narrative on its environmental sustainability is required, in addition to informing consumers on important dye performance indicators (stability, lightfastnest, colurfastness, reliability). She also stated that removing biased preconceptions against “bacteria” products would be helpful.
Miss Leong cautioned us that yellow was not a popular locally worn colour, but was a non-issue compared to the replacement of synthetic dyes. Miss Leong also recommended to focus on the production of synthetic dyes, achieve good colour mixing and produce an array of colours.
Drawing on her experience of working with natural dyes, she taught us much about the different plants we could consider extracting dyes from and creative techniques such as infusing cellulose-based textiles with proteins or tannins to increase the the fabric ability to absorb dyes. We even touched on her deeply moving experience of meeting her idol, the late legendary experimental textile designer Junichi Arai. From this interview, we became aware of even more factors to consider when designing our dye, such as the ratio of water to dye to the weight of the fabric, or how much dye is required to get a specific intensity.
Her artisanal approach has introduced our team to a whole new paradigm, where the inherent flaws of natural dyes are valuable precisely because of their imperfect nature. One criticism of natural dyes is that they are dull and muted. However, during the interview, we learned a secret - because of this, all natural dyes match well with each other. In contrast, synthetic dyes would appear garish.
Miss Leong’s interview was incredibly helpful, yet our task ahead has become even more difficult, because we now have to consider the problem on a more visceral, aesthetic level. But we believe that makes our problem all the more worthwhile to solve.
[5/8] - Mr. Vinod Agnihotri
Mr Vinod Agnihotri manages LANXESS operations in Singapore, as well as its Material Protection Products Business Unit for the Asia Pacific region. While LANXESS is no longer involved in textile dye production, Mr Agnihotri himself has a degree in Chemistry, and another in Textile Chemistry and Fibre Technology. As Singapore does not have a textile industry, we felt very fortunate to have found such an expert.
We started the interview by discussing fashion’s environmental impact. Once again, we were told that the textile and dye industries were not environmentally-friendly in all aspects. He confirmed our problem statement by identifying the most pollutive part of fashion - the production of the dye itself. The water quality of water bodies near dye factories are an especially big concern, and the pollutive impact of the chemicals depends on the method of production and the yield.
After hearing what we planned to do to solve this, Mr Agnihotri told us that to be competitive, our dyes need to achieve industry fastness levels, and we have to produce many shades with high reproducibility, while remaining economic. In short, while natural dyes could be relatively better for the environment compared to synthetic dyes, our natural dyes still need to meet performance criteria demanded by consumers.
To wrap up our interview, we went through the perceptions of different stakeholders. Firstly, as consumers are getting more savvy, there is a growing demand for higher-quality, less pollutive dyes. Secondly, he pointed out that the educated layman, as a consumer, may be repulsed by the idea of bacteria having previously been in the dye, even if we claim that all the bacteria has been removed from the dye. This was valuable to us because our team initially believed that consumers and designers would be more interested in our dyes if they knew it had been made using synthetic biology. It indicates that our next step for Human Practices should be to find out how many other people share his opinion. Thirdly, eco-friendly dyes are something chemical companies would welcome, because the average consumer associates “chemical” with “harmful”. Lastly, he suggested that to become commercially successful, we could collaborate with prominent brands in the fashion industry who are willing to experiment with natural dyes.
Mr Vinod Agnihotri manages LANXESS operations in Singapore, as well as its Material Protection Products Business Unit for the Asia Pacific region. While LANXESS is no longer involved in textile dye production, Mr Agnihotri himself has a degree in Chemistry, and another in Textile Chemistry and Fibre Technology. As Singapore does not have a textile industry, we felt very fortunate to have found such an expert.
We started the interview by discussing fashion’s environmental impact. Once again, we were told that the textile and dye industries were not environmentally-friendly in all aspects. He confirmed our problem statement by identifying the most pollutive part of fashion - the production of the dye itself. The water quality of water bodies near dye factories are an especially big concern, and the pollutive impact of the chemicals depends on the method of production and the yield.
After hearing what we planned to do to solve this, Mr Agnihotri told us that to be competitive, our dyes need to achieve industry fastness levels, and we have to produce many shades with high reproducibility, while remaining economic. In short, while natural dyes could be relatively better for the environment compared to synthetic dyes, our natural dyes still need to meet performance criteria demanded by consumers.
To wrap up our interview, we went through the perceptions of different stakeholders. Firstly, as consumers are getting more savvy, there is a growing demand for higher-quality, less pollutive dyes. Secondly, he pointed out that the educated layman, as a consumer, may be repulsed by the idea of bacteria having previously been in the dye, even if we claim that all the bacteria has been removed from the dye. This was valuable to us because our team initially believed that consumers and designers would be more interested in our dyes if they knew it had been made using synthetic biology. It indicates that our next step for Human Practices should be to find out how many other people share his opinion. Thirdly, eco-friendly dyes are something chemical companies would welcome, because the average consumer associates “chemical” with “harmful”. Lastly, he suggested that to become commercially successful, we could collaborate with prominent brands in the fashion industry who are willing to experiment with natural dyes.
[6/8] - Ms. Angelene Wong
In Progress
In Progress
[7/8] - Dr. Nic Lindley
Dr Nic Lindley is the Strategic Director of the Biotransformation Innovation Platform (BIP) at the Agency for Science, Technology and Research (A*STAR) Singapore. BIP is a research initiative to discover novel sustainable biotechnology to produce high value-added specialty chemical ingredients for use in food, nutrition and consumer care. This spans the screening of natural and synthetic biodiversity to identify new target molecules which harness the natural or engineered metabolic capacity of microbial platforms adapted to the constraints of industrial scale fermentation. They hope to provide sustainable biotechnology solutions which satisfy consumer desires to see natural ingredients and clean labels. As their research objectives seemed highly similar to ours, we sought Dr Lindley’s expertise and experience to understand how we could refine our own system, and increase our luteolin and naringenin yields.
We explained our project to him, and he validated our approach, saying that the devastating effects of chemical synthesis on the environment provides us a compelling reason for favouring biological synthesis instead, though it remains important to keep organic synthesis cost-effective and high-yield. He also approved of key aspects of our project, namely, our use of xylose in our feedstock, and our optogenetic circuit. Although we initially chose to utilize xylose just to give empty fruit bunches a new lease of life and make our process more environmentally friendly, Dr. Lindley was enthusiastic about our use of xylose due to the abundance of cheap lignocellulosic waste sources, amongst other advantages. However, he reminded us that as xylose is a hemicellulose molecule, hemicellulose degradation produces other pentose sugars which could have compatibility issues with our substrates, and thus it is important to retain the cells’ ability to metabolize glucose. As for our blue light-repressible circuit, he said that it was good to induce enzyme expression by the absence of blue light, as light is more cost-effective than chemical inducers. Another advantage of using a repressible system is that light penetration would become limited anyway as cell densities increase. He anticipated that using light as a control would become a problem once we try to scale up our project to the industrial level. Once again, light penetration would be the crux, but perhaps we could consider maintaining light distribution throughout the medium using fibre optics.
Of course, our project at that stage was far from perfect. When we shared our problems with Dr. Lindley, he gave us suggestions on how to increase our yield and expounded on bioreactor design theories. One key principle would be to strike a balance between growth and production. This can be achieved by maintaining a very minimal vital growth phase, as once cells stop growing, they inevitably lose biological activity. Getting the right feeding would be essential to achieving that fine balance, but trying to limit growth by restricting sugar supply would actually cause cells to favour growth over production instead, as they are inclined to prioritize their own survival. This illustrates the possibility of utilizing the feedstock to control metabolic flux. Turns out xylose has more utility than we previously thought! Another insight he offered was for us to select an organic layer and incorporate it into our growth medium, so that our products could move into the layer and stop inhibiting cell growth, basically the operating principle of biphasic bioreactors.
Dr. Lindley gave us feedback on other components of our system as well, in particular, the stress sensor. While he felt that our idea was of value, he was unsure if it would continue to work as expected once our system migrates to an industrial bioreactor. As cells move around inside a bioreactor due to mixing, they will encounter different physical and chemical environments and will thus frequently experience different stresses, for example, stress due to heat shock response, oxygen limitation, and carbon limitation. It would be challenging to determine the predominant stress in such a complex system. However, our system is small enough that it is reasonable to assume uniform mixing, and thus a homogeneous physical and chemical environment throughout. The predominant stress is then most likely the stress from recombinant protein expression, and our stress sensor’s detection scope is sufficient for our current purposes.
Throughout the interview, Dr. Lindley strove to help us envision our project beyond iGEM by sharing the problems faced by industrial-scale bioreactors, relating these to the challenges we were facing, and proposing ways for us to circumvent or alleviate these issues. Since we learned how the industry is particularly conservative when it comes to bioreactor design, we decided to challenge ourselves. Using Dr. Lindley’s valuable input, we radically rethought the bioreactor and designed one that would synergize with our optogenetic circuit.
Dr Nic Lindley is the Strategic Director of the Biotransformation Innovation Platform (BIP) at the Agency for Science, Technology and Research (A*STAR) Singapore. BIP is a research initiative to discover novel sustainable biotechnology to produce high value-added specialty chemical ingredients for use in food, nutrition and consumer care. This spans the screening of natural and synthetic biodiversity to identify new target molecules which harness the natural or engineered metabolic capacity of microbial platforms adapted to the constraints of industrial scale fermentation. They hope to provide sustainable biotechnology solutions which satisfy consumer desires to see natural ingredients and clean labels. As their research objectives seemed highly similar to ours, we sought Dr Lindley’s expertise and experience to understand how we could refine our own system, and increase our luteolin and naringenin yields.
We explained our project to him, and he validated our approach, saying that the devastating effects of chemical synthesis on the environment provides us a compelling reason for favouring biological synthesis instead, though it remains important to keep organic synthesis cost-effective and high-yield. He also approved of key aspects of our project, namely, our use of xylose in our feedstock, and our optogenetic circuit. Although we initially chose to utilize xylose just to give empty fruit bunches a new lease of life and make our process more environmentally friendly, Dr. Lindley was enthusiastic about our use of xylose due to the abundance of cheap lignocellulosic waste sources, amongst other advantages. However, he reminded us that as xylose is a hemicellulose molecule, hemicellulose degradation produces other pentose sugars which could have compatibility issues with our substrates, and thus it is important to retain the cells’ ability to metabolize glucose. As for our blue light-repressible circuit, he said that it was good to induce enzyme expression by the absence of blue light, as light is more cost-effective than chemical inducers. Another advantage of using a repressible system is that light penetration would become limited anyway as cell densities increase. He anticipated that using light as a control would become a problem once we try to scale up our project to the industrial level. Once again, light penetration would be the crux, but perhaps we could consider maintaining light distribution throughout the medium using fibre optics.
Of course, our project at that stage was far from perfect. When we shared our problems with Dr. Lindley, he gave us suggestions on how to increase our yield and expounded on bioreactor design theories. One key principle would be to strike a balance between growth and production. This can be achieved by maintaining a very minimal vital growth phase, as once cells stop growing, they inevitably lose biological activity. Getting the right feeding would be essential to achieving that fine balance, but trying to limit growth by restricting sugar supply would actually cause cells to favour growth over production instead, as they are inclined to prioritize their own survival. This illustrates the possibility of utilizing the feedstock to control metabolic flux. Turns out xylose has more utility than we previously thought! Another insight he offered was for us to select an organic layer and incorporate it into our growth medium, so that our products could move into the layer and stop inhibiting cell growth, basically the operating principle of biphasic bioreactors.
Dr. Lindley gave us feedback on other components of our system as well, in particular, the stress sensor. While he felt that our idea was of value, he was unsure if it would continue to work as expected once our system migrates to an industrial bioreactor. As cells move around inside a bioreactor due to mixing, they will encounter different physical and chemical environments and will thus frequently experience different stresses, for example, stress due to heat shock response, oxygen limitation, and carbon limitation. It would be challenging to determine the predominant stress in such a complex system. However, our system is small enough that it is reasonable to assume uniform mixing, and thus a homogeneous physical and chemical environment throughout. The predominant stress is then most likely the stress from recombinant protein expression, and our stress sensor’s detection scope is sufficient for our current purposes.
Throughout the interview, Dr. Lindley strove to help us envision our project beyond iGEM by sharing the problems faced by industrial-scale bioreactors, relating these to the challenges we were facing, and proposing ways for us to circumvent or alleviate these issues. Since we learned how the industry is particularly conservative when it comes to bioreactor design, we decided to challenge ourselves. Using Dr. Lindley’s valuable input, we radically rethought the bioreactor and designed one that would synergize with our optogenetic circuit.
[8/8] - Dr. Yvonne Chow
In Progress
In Progress