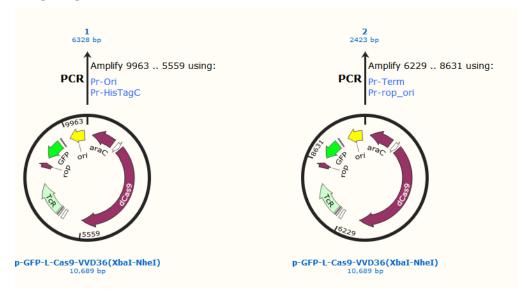
# Notebook for dCas9 Expression Validation and


# **Logic Circuits Construction**

(written by Tanya Zhang)

# Module 1. dCas9 expression and validation

### **Date: 7.23**

- 1. Activating the glycerol bacteria with the dCas9 plasmids (pdCas9).
- 2. Prepare solid medium with 1/500 Tetracycline.
- 3. Explore the condition to amplify the two fragments on the plasmid by PCR.
- The principle:



The left one is fragment A, which contains ori, araC and dCas9. It is 6328bp. The right one is fragment B, which contains rop and TcR. It is 2423bp.

• The system:

|                                  | Fragment A | Fragment B |
|----------------------------------|------------|------------|
| 2x High-Fidelity Master Mix      | 50ul       | 50ul       |
| Primer A (10uM)                  | 4ul        | 4ul        |
| Primer B (10uM)                  | 4ul        | 4ul        |
| Template DNA (diluted 200 times) | 3ul        | 3ul        |
| ddH2O                            | 39ul       | 39ul       |
| Total                            | 100ul      | 100ul      |

- The steps:
  - Measure the concentration of nucleic acids.

- $\circ$   $\;$  The template DNA is diluted according to the measured concentration.
- Mix the system.
- $\circ$   $\;$  Put it in the PCR machine.
- Set the thermocycling conditions to explore the optimal annealing temperature.

| Steps                | Temperature                                    | Time-fragment A | Time-fragment<br>B |
|----------------------|------------------------------------------------|-----------------|--------------------|
| Initial denaturation | 98°C                                           | 2 minutes       | 2 minute           |
| Denaturation         | 98°C x35cycle                                  | 10 seconds      | 10 seconds         |
| Annealing            | 53°C~57°C<br>-fragmentA<br>59°C~65°C-fragmentB | 15 seconds      | 15 seconds         |
| Extension            | 72°C                                           | 90 seconds      | 30 seconds         |
| Final Extension      | 72 <b>°C</b>                                   | 5 minutes       | 5 minutes          |
|                      | 4°C                                            | Hold            | Hold               |

- The results:
  - The concentration of nucleic acids: The concentration of nucleic acids is 722 ng/ul. When we use it, we dilute it 200 times.
  - The fragment A:

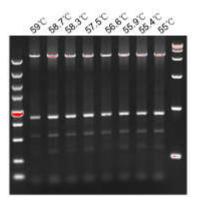



Figure: Electrophoresis result of PCR. The annealing temperature ranges from 55 to 59  $\,$  °C.

We chose  $55^{\circ}C$  as the optimal annealing temperature.

• The fragment B:

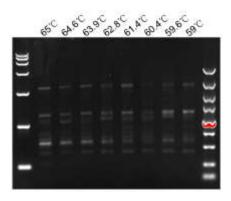



Figure: Electrophoresis result of PCR. The annealing temperature ranges from 59 to 65 °C.

We adjust the range of the temperature to 55 to 59°C.

#### **Date: 7.24**

- 1. Explore the condition to amplify the fragment B by PCR.
- The system is the same as before.
- The steps:
  - $\circ$  Measure the concentration of nucleic acids.
  - The template DNA is diluted according to the measured concentration.
  - Mix the system.
  - Put it in the PCR machine.
  - Set the thermocycling conditions to explore the optimal annealing temperature.

| Steps                | Temperature        | Time-fragment B |
|----------------------|--------------------|-----------------|
| Initial denaturation | 98℃                | 2 minute        |
| Denaturation         | 98°C x35cycle      | 10 seconds      |
| Annealing            | 55℃~59℃-fragment B | 15 seconds      |
| Extension            | 72°C               | 30 seconds      |
| Final Extension      | 72°C               | 5 minutes       |
|                      | 4℃                 | Hold            |

• The results:

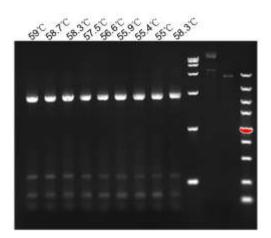



Figure: Electrophoresis result of PCR. The annealing temperature ranges from 55 to 59 °C.

We chose the optimal annealing temperature as 58.5°C.

2. Amplify the two fragments on the plasmid by PCR.

| • The system: |  |
|---------------|--|
|---------------|--|

|                                  | Fragment A | Fragment B |
|----------------------------------|------------|------------|
| 2x High-Fidelity Master Mix      | 150ul      | 100ul      |
| Primer A (10uM)                  | 12ul       | 8ul        |
| Primer B (10uM)                  | 12ul       | 8ul        |
| Template DNA (diluted 200 times) | 4.5ul      | 3ul        |
| ddH2O                            | 117ul      | 78ul       |
| Total                            | 300ul      | 200ul      |

• The steps are the same as the optimal steps. The annealing temperature of fragment A is 55°C. And the annealing temperature of fragment B is 58.5°C.

The results:

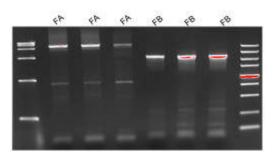



Figure: Electrophoresis result of fragment A and fragment B which are amplified by PCR. There are non-specific bands in the figure. Therefore, we hope to adjust the reaction conditions.

### **Date: 7.27**

- 1. Amplify the two fragments on the plasmid by PCR.
- The system is the same as before.
- The steps:
  - Measure the concentration of nucleic acids.
  - $\circ$   $\;$  The template DNA is diluted according to the measured concentration.
  - Mix the system.
  - Put it in the PCR machine.
  - Set the thermocycling conditions to explore the optimal annealing temperature.

| Steps                | Temperature      | Time-fragment A | Time-fragment<br>B |
|----------------------|------------------|-----------------|--------------------|
| Initial denaturation | 98° <b>C</b>     | 5 minutes       | 5 minute           |
| Denaturation         | 98°C x35cycle    | 30 seconds      | 30 seconds         |
| Annealing            | 55°C-fragmentA   | 30 seconds      | 30 seconds         |
|                      | 58.5°C-fragmentB |                 |                    |
| Extension            | 72°C             | 180 seconds     | 60 seconds         |
| Final Extension      | 72 <b>°C</b>     | 5 minutes       | 5 minutes          |
|                      | 4°C              | Hold            | Hold               |

Note: We extend the time for each reaction to improve the reaction results.

• The results:

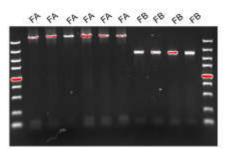



Figure: Electrophoresis result of PCR. The annealing temperature ranges from 55 to 59 °C.

We chose the optimal annealing temperature as 58.5°C.

### Date: 7.28

- 1. Connect the two fragments using SLIC.
- The system:
  - The system1 for digestion:

|                        | Fragment A | Fragment B |
|------------------------|------------|------------|
| T4 polymerase(0.5U/ul) | 2.2ul      | 1.3ul      |
| Total DNA              | 12ul       | 12ul       |
| T4 polymerase buffer   | 1.6ul      | 1.6ul      |

 $\circ$   $\;$  The system2 for ligation:

| Fragment A         | 9ul             |
|--------------------|-----------------|
| Fragment B         | 9ul             |
| Ligase buffer      | 2ul             |
| Total              | 20ul            |
| Dilute -fragment A | 4.3ul ddH2O+2ul |
| Dilute-fragment B  | 8.3ul ddH2O+2ul |

- The steps:
  - Incubate 50ul PCR product with 0.5ul DpnI at 37°C for 30 minutes.
  - Purify the PCR product. (The final volume is 20ul. )
  - Calculate the amount of DNA to be added.
  - $\circ$   $\,$  Calculate the amount of T4 DNA polymerase (0.5U\ug) to be added.
  - After adding buffer and enzyme, incubate at 37°C for 30 minutes.
  - Placed on ice quickly.
  - $\circ$  Add 1\10 volume 10mM dCTP to stop the reaction.
  - Store at -20°C.
- 2. Transformation
- The results:
  - $\circ$   $\,$  No colony. We speculate that the amount of enzyme is too much, which influences the reaction.

## Date: 7.30

- 1. Connect the two fragments using SLIC.
- The system:
  - The system1:

|  | Fragment A | Fragment B |
|--|------------|------------|
|--|------------|------------|

| Fragment      | 12ul  | 12ul  |
|---------------|-------|-------|
| T4 polymerase | 2.6ul | 1.8ul |
| Buffer        | 1.6ul | 1.5ul |

• The system2:

| Fragment A         | 9ul              |
|--------------------|------------------|
| Fragment B         | 9ul              |
| Ligase buffer      | 2ul              |
| Total              | 20ul             |
| Dilute -fragment A | 5.8ul ddH2O+2ul  |
| Dilute-fragment B  | 12.9ul ddH2O+2ul |

- 2. Amplify the two fragments on the plasmid by PCR.
- The total volume is increased to 300ul.
- 3. Measure the conversion efficiency of competent state.
- The results: The conversion efficiency of competent trans5a is about 1E+9.

#### **Date: 7.31**

- 1. Amplify the two fragments on the plasmid by PCR.
- The system:

|                                  | Fragment A | Fragment B |
|----------------------------------|------------|------------|
| 2x High-Fidelity Master Mix      | 100ul      | 50ul       |
| Primer A (10uM)                  | 8ul        | 4ul        |
| Primer B (10uM)                  | 8ul        | 4ul        |
| Template DNA (diluted 200 times) | 3ul        | 1.5ul      |
| ddH2O                            | 81ul       | 40.5ul     |
| Total                            | 200ul      | 100ul      |

• The steps are the same as the optimal steps.

• The results:

Figure: Electrophoresis result of fragment A and fragment B which are amplified by PCR.

- 2. Purify the fragments through gel extraction and quantify them.
- 3. Connect the two fragments using SLIC.
- The system:
  - The system1:

|                        | Fragment A | Fragment B |
|------------------------|------------|------------|
| Fragment               | 12ul       | 12ul       |
| T4 polymerase(0.5U/ul) | 0.96ul     | 0.662ul    |
| Buffer                 | 1.55ul     | 1.48ul     |

• The system2:

| Fragment A        | 9ul              |
|-------------------|------------------|
| Fragment B        | 9ul              |
| Ligase buffer     | 2ul              |
| Total             | 20ul             |
| Dilute-fragment B | 7.12ul ddH2O+4ul |

- The steps are the same as before.
- The results: No colony.

### **Date: 8.1**

1. Activating the glycerol bacteria with the dCas9 plasmids (pdCas9).

### Date: 8.2

- 1. Connect the two fragments using SLIC.
- The system and the steps are the same as before.
- 2. Transformation
- 3. Plasmid extraction, gel electrophoresis and sequencing.

### **Date: 8.3**

- 1. Pick the monoclonal colonies of the plate on July 30th.
- 2. Colony PCR.
- 3. Plasmid extraction, gel electrophoresis and sequencing.
- 4. Amplify the two fragments on the plasmid by PCR.
- The system:

The system is the same as before. However, there is an extra system.

| PCR system   | 50ul  |
|--------------|-------|
| Dpn I        | 1ul   |
| 10x T buffer | 5.6ul |

- The steps: The steps are the same as before. But after PCR, we add Dpn I to digest the template. Note: This operation can remove the template DNA and avoid false positive results.
- The results: The bands of fragment A are not clear.

•

- Amplify the fragment A by PCR.
  Note: At the first time, we repeat the experiment. At the second time, we change into new primers and new template. Compared with the first one, the results of the second time indicate that this may be a problem with primers and templates.
- 2. Gel extraction.

### Date: 8.5

- Amplify the fragment A by PCR. Note: We use DpnI in group2-5, while we don't add the enzyme in group1.
- The results: Compared with group1, the bands in group2-5 are clearer.
- 2. Connect the two fragments using SLIC.
- The system:
  - The system1:

|               | Fragment A | Fragment<br>B |
|---------------|------------|---------------|
| Fragment      | 12ul       | 12ul          |
| T4 polymerase | 1.0ul      | 1.2ul         |
| Buffer        | 1.4ul      | 1.5ul         |
|               |            |               |
| dCTP          | 1.4ul      | 1.5ul         |

• The system2:

| Fragment A : Fragment B | 1:1              | 1:2              |
|-------------------------|------------------|------------------|
| Fragment A              | 4.5ul            | 4.5ul            |
| Fragment B              | 4.5ul            | 4.5ul            |
| Ligase buffer           | 2ul              | 2ul              |
| Dilute-fragment B       | 5.34ul ddH2O+2ul | 1.67ul ddH2O+2ul |

- 1. Transformation
- The results: No colony.

### **Date: 8.10**

- 1. Activating the glycerol bacteria with the dCas9 plasmids (pdCas9).
- 2. Explore the condition to amplify the fragment on the plasmid by PCR. Note: we use Primestar as the enzyme which is different with Mclab.
- The system:

| 5x PS GXL buffer         | 40ul  |
|--------------------------|-------|
| dNTP                     | 16ul  |
| Primer1                  | 4ul   |
| Primer2                  | 4ul   |
| Template (2ng/ul)        | 8ul   |
| Primestar GXL polymerase | 8ul   |
| ddH2O                    | 120ul |
| Total                    | 200ul |

• The steps:

| 98°C      | 30s           |
|-----------|---------------|
| 98℃       | 10s x30 cycle |
| 52°C~58°C | 15s           |
| 68°C      | 5min          |
| 4°C       | Hold          |

• The results:

We choose  $55^{\circ}$ C as the optimal annealing temperature.

- 3. Amplify the fragment on the plasmid by PCR.
- The steps are the same as the optimal steps.

- 1. Plasmid extraction and nucleic acid quantification.
- The results:

| dCas9 plasmid | Concentration |
|---------------|---------------|
| 1             | 23            |
| 2             | 20            |
| 3             | 26            |
| 4             | 27            |
| 5             | 43            |
| 6             | 28            |

- 2. Enzyme digestion:
- The principle:

<u>We use new way to construct the plasmid.</u> The backbone is constructed by enzyme digestion of original plasmid. The fragment is constructed by PCR. The designed primers can add restriction enzyme cutting site. Through enzyme digestion, the fragment can expose the same sticky ends.

• The system:

|                     | Fragment A (with dCas9) | Fragment B |
|---------------------|-------------------------|------------|
| DNA                 | 24ul                    | 14ul       |
| 10x Quickcut buffer | 3ul                     | 2ul        |
| Q.EcoR I            | lul                     | lul        |
| Q.Xba I             | lul                     | lul        |
| ddH2O               | lul                     | 2ul        |
| Total               | 30ul                    | 20ul       |

• The steps:

|       | Fragment A | Fragment<br>B |
|-------|------------|---------------|
| 37°C  | 45 minutes | 15 minutes    |
| -20°C | -          | Hold          |

#### • The results: ~酶切结果

- 3. Gel extraction and nucleic acid quantification.
- 4. Ligation:
- The system:

|                   | Group1 | Group2 |
|-------------------|--------|--------|
| 10x ligase buffer | 1.5ul  | 2ul    |
| plasmid           | 3.5ul  | 7ul    |
| insert            | 5.2ul  | 10.2ul |
| T4 ligase         | 1ul    | 1ul    |
| ddH2O             | 3.8ul  | 0.8ul  |
| Total             | 15ul   | 20ul   |

- The steps:
  - Mix the reaction system.
  - $\circ$   $\;$  The mix are placed at 16  $^\circ\!\mathrm{C}\;$  for 8h and then at 4  $^\circ\!\mathrm{C}\;$  overnight.
- 5. Activating the glycerol bacteria with the dCas9 plasmids (pdCas9).

#### **Date: 8.12**

- 1. Enzyme digestion, gel extraction and ligation.
- 2. Transformation.
- 3. Plasmid extraction and nucleic acid quantification.

### Date: 8.13

1. Pick the monoclonal colonies. Do colony PCR. And add liquid culture medium to amplify the bacteria.

#### **Date: 8.14**

- 1. Plasmid extraction and sequencing.
- The results:
  - The concentration of the plasmid is too low to measure.
- 2. Pick new monoclonal colonies and colony PCR.
- The results: The bacteria don't grow.
- 3. Prepare solid and liquid culture medium.

#### **Date: 8.15**

- Enzyme digestion, gel extraction and ligation.
  Note: At this time, we change the system of ligation.
- The system:

| 10x T4 ligase buffer | 1.5ul |
|----------------------|-------|
| Backbone(20ng)       | 10ul  |
| Fragment(40ng)       | 2ul   |
| T4 ligase            | 1ul   |
| ddH2O                | 0.5ul |
| Total                | 15ul  |

2. Transformation.

### Date: 8.17

- 1. Pick the monoclonal colonies. And add liquid culture medium to amplify the bacteria.
- The results:

The bacteria don't grow, which indicates that tetracycline doesn't work.

- 2. PCR the recombinant plasmid
- The principle: If the electrophoresis result of the recombinant plasmid is the same as the original plasmid, the two fragments connect correctly. If not, they don't.
- The results:

There is no the same results. Therefore, they connect incorrectly.

- 3. Amplify the fragment on the plasmid by PCR.
- 4. Gel extraction.
- 5. Enzyme digestion, gel extraction and ligation.
- The system:

|              | Backbone | Fragment |
|--------------|----------|----------|
| DNA          | 14ul     | 5ul      |
| 10x Q.buffer | 2ul      | 1.5ul    |
| Q.EcoR I     | lul      | 1ul      |
| Q.Xba I      | 1ul      | 1ul      |
| ddH2O        | 2ul      | 6.5ul    |
| Total        | 20ul     | 15ul     |
| The stars.   |          |          |

• The steps:

|  | Backbone | Fragment |
|--|----------|----------|
|--|----------|----------|

| 37° <b>C</b> | 45min+20min | 25min |
|--------------|-------------|-------|
| 4°C          | Hold        | Hold  |

- 1. Transformation.
- The results: No colony.

#### Date: 8.19

1. Enzyme digestion, gel extraction and ligation.

#### **Date: 8.20**

- 1. Transformation.
- 2. Enzyme digestion, gel extraction and ligation
- The system:

|              | Backbone | Fragment |
|--------------|----------|----------|
| DNA          | 10ul     | 3ul      |
| 10x Q.buffer | 1.5ul    | lul      |
| Q.EcoR I     | 1ul      | lul      |
| Q.Xba I      | 1ul      | lul      |
| ddH2O        | 1.5ul    | 4ul      |
| Total        | 15ul     | 10ul     |

• The steps:

|      | Backbone | Fragment |
|------|----------|----------|
| 37°C | 1.5h     | 1.5h     |
| 4°C  | Hold     | Hold     |

Note: We digest for 1.5h which is longer than before. And we use NEB ligase to connect the fragment.

#### **Date: 8.21**

1. Transformation.

- 2. Explore the condition to amplify the fragment by PCR using new primers.
- The system:

| 2.34     | 100.1 |
|----------|-------|
| 2x Mix   | 100ul |
| Primer1  | 6ul   |
| Primer2  | 6ul   |
| Template | 4ul   |
| ddH2O    | 84ul  |
| Total    | 200ul |

• The results:

The optimal annealing temperature is 54°C.

3. Amplify the fragment by PCR under the optimal condition.

#### **Date: 8.22**

- 1. Enzyme digestion of the backbone and the amplified fragment.
- The principle: According to the design of the new primer, we use EcoR I and Xho I as the enzyme.
- The steps:

We incubate at 37°C for 1h.

- 2. Gel extraction and nucleic acid quantification.
- 3. Ligation:
- The steps: We connect the fragments in group1 for 8h, while we connect the fragments in group2 for 14h.

#### **Date: 8.23**

- 1. Transformation.
- The results: NC group doesn't have colony. PC group and experimental groups have colonies.

#### **Date: 8.24**

- 1. Pick the monoclonal colonies. And do colony PCR.
- 2. Add medium to the colonies with positive results.