Difference between revisions of "Team:NKU CHINA/interlab"

 
(76 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{Template:NKU_CHINA/header}}
 
{{Template:NKU_CHINA/header}}
 
<html>
 
<html>
    <head>
+
<head>
        <meta charset="utf-8">
+
<style type="text/css">
        <title>Team:NKU-CHINA Interlab</title>
+
.subnavpicture .img2{display: none;}
    <meta name="description" content="">
+
.subnavpicture:hover .img1{display: none;}
        <meta name="viewport" content="width=device-width, initial-scale=1">
+
.subnavpicture:hover .img2{display: block;}
        <link href='https://2018.igem.org/Team:NKU_CHINA/interlab/style1?action=raw&ctype=text/css'>
+
.subnavpicture {
       
+
      position: absolute;  /*使其绝对定位到框中央(圆心位置),便于旋转*/
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style2?action=raw&ctype=text/css">
+
    top: 10%; left: 5%;
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style3?action=raw&ctype=text/css">
+
    margin-top: -2.25em;  /*抵消绝对定位,使其仍然从左上角开始显示*/
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style4?action=raw&ctype=text/css">
+
    margin-left: -2.25em; /*2.25em为按钮的半径*/
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style5?action=raw&ctype=text/css">
+
    width: 4.5em;height: 4.5em;
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style6?action=raw&ctype=text/css">
+
    z-index: 11;
        <link rel="stylesheet" href="https://2018.igem.org/Team:NKU_CHINA/interlab/style7?action=raw&ctype=text/css">
+
    padding-top: 0em;
        <style type="text/css">
+
    border: none;
<!--
+
    background: none;
#sideMenu,
+
    text-align: center;
#top_title{
+
    font-weight: 700;
    display: none;
+
    font-size: 1.5em;
 +
    text-transform: uppercase;
 +
    cursor: pointer; /*悬停时的光标形状,pointer是只手*/
 +
    -webkit-backface-visibility: hidden; /*当元素不面向屏幕时(背面)不可见*/
 
}
 
}
#content{
+
.component {
    width: 100%;
+
    height: 13em; /*扇形区域的高度(半径)*/
    margin: 0px;
+
    top: 50%;
    padding:0;
+
    left: 1.8%;
}
+
    position:fixed;
body{
+
    z-index: 100;
background-color:white;
+
}
 +
.round-nav {
 +
  position: absolute;
 +
  z-index: 150;
 +
  display: none;
 +
  top: -65%;
 +
  left: 10px;
 +
}
 +
.opened-nav {
 +
  position:absolute;
 +
  top: -65%;
 +
  left: 10px;
 +
  z-index: 150;
 +
  display: block;
 +
}
 +
#one1 {
 +
  margin-bottom: 10px;
 +
}
 +
#two2 {
 +
  margin-bottom: 10px;
 
}
 
}
  
 
+
.panelheadingcursor {
img.big
+
  cursor: pointer;
{
+
height: 160px
+
 
}
 
}
 +
    </style>
 +
    <script type="text/javascript">
 +
            var open = true;
 +
            function toggleClass(){
 +
                wrapper = document.getElementById('nav-wrapper');
 +
                    wrapper.className = "opened-nav";
 +
            } 
 +
            function toggledispear(){
 +
              wrapper = document.getElementById('nav-wrapper');
 +
              wrapper.className = "round-nav";
 +
            }     
 +
    </script>
  
 +
</head>
 +
<body>
 +
    <div>
 +
      <img class="myBackground" src="https://static.igem.org/mediawiki/2018/6/64/T--NKU_CHINA--background.jpg">
 +
    </div>
 +
      <div class="container-fluid">
 +
      <div class="row">
 +
        <div class="component col-xs-4 col-xs-push-1">
 +
              <div class="subnavpicture" onmouseover="toggleClass()">
 +
                <img class="img1" src="https://static.igem.org/mediawiki/2018/3/32/T--NKU_CHINA--cebian1.png" style="height: 250px;width: auto;">
 +
                <img class="img2" src="https://static.igem.org/mediawiki/2018/7/7e/T--NKU_CHINA--cebian2.png" style="height: 250px;width: auto;">
 +
              </div>
 +
            <div class="round-nav" id="nav-wrapper" onclick="toggledispear()">
 +
                <ul class="list-unstyled">
 +
                    <li id="one1"><a href="#firstpart" data-toogle="tooltip" data-placement="right" title="Materials"><span><img src="https://static.igem.org/mediawiki/2018/6/63/T--NKU_CHINA--interlab_subnav1.png" style="width: 50px;height: auto;"></span></a></li>
 +
                    <li id="two2"><a href="#secondpart" data-toogle="tooltip" data-placement="right" title="Methods"><span><img src="https://static.igem.org/mediawiki/2018/a/a6/T--NKU_CHINA--interlab_subnav2.png" style="width: 50px;height: auto;"></span></a></li>
 +
                    <li id="three3"><a href="#thirdpart" data-toogle="tooltip" data-placement="right" title="Results"><span><img src="https://static.igem.org/mediawiki/2018/a/ac/T--NKU_CHINA--interlab_subnav3.png" style="width: 40px;height: auto;"></span></a></li>
 +
                </ul>
 +
            </div>
 +
        </div>
 +
    </div>
 +
</div>
  
</style>
 
        <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js1?action=raw&ctype=text/javascript"></script>
 
    </head>
 
    <body>
 
        <!--[if lt IE 7]>
 
            <p class="chromeframe">You are using an outdated browser. <a href="http://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p>
 
        <![endif]-->
 
  
 +
    <main>
 +
    <h3 class="text-center" style="font-size: 60px;font-weight: normal;color: white;padding-bottom: 20px; font-family: myTitle;">Overview</h3>
 +
  <p class="homepage-2" style="margin-right: 10%;margin-left: 10%; margin-top:10px; font-size: 20px; color: white;">Poverty in taking reliable and repeatable measurements remains a key obstacle in establishing synthetic biology as an engineering discipline. The Measurement Committee has been studying the measurement procedure for green fluorescent protein (GFP) over the last several years by interlab. The most commonly used markers though GFP is in synthetic biology, labs often resort to making relative comparisons, which makes it difficult for labs to share and data and/or constructs.<br><br>
 +
The goal of the fifth iGEM InterLab Study is to identify and correct the sources of systematic variability in synthetic biology measurements by answering the question "Can we reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of OD? "<br><br>
 +
As we know in the previous study, the fluorescence value measured by a plate reader is an aggregate measurement of an entire population of cells, we need to divide the total fluorescence by the number of cells in order to determine the mean expression level of GFP per cell. Due to the fact that the "optical density (OD)" of the sample is an approximation of the number of cells varying from lab to lab, we decided to use a special silica beads that are roughly the same size and shape as a typical <i id="firstpart">E. coli</i> cell to set up a universal, standard "equivalent concentration of beads" measurement.
 +
</p>
  
 +
      <h3 class="text-center" style="font-family: myTitle;font-size: 60px; font-weight: normal;color: white; padding-bottom: 20px;padding-top: 30px;"><img src="https://static.igem.org/mediawiki/2018/6/63/T--NKU_CHINA--interlab_subnav1.png" style="width: 60px;height: auto;">Materials</h3>
 +
<div class="panel-group" id="materials">
 +
  <div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#materials" data-target="#collapse1" style="background-color: #B5CACF;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">Reagents and Apparatus</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse1" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <ul class="interlab-list">
 +
<li style="font-size: 20px;line-height: 25px;">Competent cells (<i>Escherichia coli</i> strain DH5&#945;)</li>
 +
<li style="font-size: 20px;line-height: 25px;">1 mL LUDOX CL-X (provided in kit) </li>
 +
<li style="font-size: 20px;line-height: 25px;">300 &#181;L Silica beads - Microsphere suspension (provided in kit, 4.7 x 10<sup>8</sup> microspheres)</li>
 +
<li style="font-size: 20px;line-height: 25px;">LB (Luria Bertani) media</li>
 +
<li style="font-size: 20px;line-height: 25px;">Fluorescein (provided in kit) </li>
 +
<li style="font-size: 20px;line-height: 25px;">10 mL 1xPBS pH 7.4-7.6 (phosphate buffered saline; provided by team) </li>
 +
<li style="font-size: 20px;line-height: 25px;">Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH) </li>
 +
<li style="font-size: 20px;line-height: 25px;">50 mL Falcon tube (or equivalent, preferably amber or covered in foil to block light) </li>
 +
<li style="font-size: 20px;line-height: 25px;">Incubator at 37&#176;C</li>
 +
<li style="font-size: 20px;line-height: 25px;">1.5 mL eppendorf tubes for sample storage</li>
 +
<li style="font-size: 20px;line-height: 25px;">Ice bucket with ice</li>
 +
<li style="font-size: 20px;line-height: 25px;">Micropipettes and tips</li>
 +
<li style="font-size: 20px;line-height: 25px;">96 well plate, black with clear flat bottom preferred (provided by team)</li>
 +
</ul>
 +
      </div>
 +
    </div>
 +
  </div>
  
        <section id="about" class="page-section">
+
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
            <div class="container-fluid">
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#materials" data-target="#collapse2" style="background-color: #D5E1E4;">
                <div class="row">
+
      <h4 class="panel-title" style="height: 35px;" id="secondpart">
                    <div class="col-sm-4 col-md4">
+
        <a style="font-size: 25px;">Devices</a>
                        <div class="service-item first-service">
+
      </h4>
                            <div class="icon">
+
    </div>
                                <img src="https://static.igem.org/mediawiki/2018/6/65/T--NKU_CHINA--first-service-icon.png" alt="">
+
    <div id="collapse2" class="panel-collapse collapse">
                            </div>
+
      <div class="panel-body">
                            <h4>Overview</h4>
+
        <h5 style="font-size: 20px;line-height: 25px;">From Distribution Kit, all in pSB1C3 backbone:</h5>
                            <div class="border-button"><a href="#portfolio">Discover More</a></div>
+
        <ul class="interlab-list">
                        </div>
+
          <li style="font-size: 20px;line-height: 25px;">Negative control BBa_R0040</li>
                    </div>
+
            <li style="font-size: 20px;line-height: 25px;">Positive control BBa_I20270</li>  
                    <div class="col-sm-4 col-md4">
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 1 BBa_J364000</li>  
                        <div class="service-item second-service">
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 2 BBa_J364001</li>  
                            <div class="icon">
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 3 BBa_J364002</li>
                                <img src="https://static.igem.org/mediawiki/2018/d/d1/T--NKU_CHINA--second-service-icon.png" alt="">
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 4 BBa_J364007</li>  
                            </div>
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 5 BBa_J364008</li>  
                            <h4>Method And Materials</h4>
+
            <li style="font-size: 20px;line-height: 25px;">Test Device 6 BBa_J364009</li>
                            <div class="border-button"><a href="#xiugai1">Discover More</a></div>
+
            </ul>
                        </div>
+
      </div>
                    </div>
+
    </div>
                    <div class="col-sm-4 col-md4">
+
</div>
                        <div class="service-item third-service">
+
</div>
                            <div class="icon">
+
</div>
                                <img src="https://static.igem.org/mediawiki/2018/d/d1/T--NKU_CHINA--third-service-icon.png" alt="">
+
                            </div>
+
                            <h4>Results</h4>
+
                            <div class="border-button"><a href="#blog">Discover More</a></div>
+
                        </div>
+
                    </div>
+
                </div>
+
            </div>
+
        </section>
+
<section id="xiugai1" >
+
</section>
+
        <div class="second-tabs-content what-we-do">
+
            <div class="container">
+
                <div class="row">
+
                    <div class="col-md-12">
+
                        <div class="section-heading">
+
                            <h4>Method And Materials</h4>
+
                           
+
                        </div>
+
                    </div>
+
                </div>
+
                <div class="row">
+
                    <div class="wrapper">
+
                        <div class="col-md-12">
+
                            <div class="row">
+
                                <ul class="tabs clearfix" data-tabgroup="second-tab-group">
+
                                    <li class="col-sm-3 col-xs-12">
+
                                        <a href="#unique" class="active">
+
                                            <div class="list-item">
+
                                                <div class="icon">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/8/89/T--NKU_CHINA--first-list-icon.png" alt="">
+
                                                </div>
+
                                                <h4><br>Calibration<br></h4>
+
                                            </div>
+
                                        </a>
+
                                    </li>
+
                                    <li class="col-sm-3 col-xs-12">
+
                                        <a href="#theme">
+
                                            <div class="list-item">
+
                                                <div class="icon">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/2/2c/T--NKU_CHINA--second-list-icon.png" alt="">
+
                                                </div>
+
                                                <h4>Competent cells and Transformation</h4>
+
                                            </div>
+
                                        </a>
+
                                    </li>
+
                                    <li class="col-sm-2 col-xs-12">
+
                                        <a href="#translation">
+
                                            <div class="list-item">
+
                                                <div class="icon">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/2/29/T--NKU_CHINA--third-list-icon.png" alt="">
+
                                                </div>
+
                                                <h4><br>Cell measurement<br></h4>
+
                                            </div>
+
                                        </a>
+
                                    </li>
+
                                    <li class="col-sm-3 col-xs-12">
+
                                        <a href="#event">
+
                                            <div class="list-item">
+
                                                <div class="icon">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/9/99/T--NKU_CHINA--fourth-list-icon.png" alt="">
+
                                                </div>
+
                                                <h4>CFU per 0.1 OD<sub>600</sub> E. coli cultures</h4>
+
                                            </div>
+
                                        </a>
+
                                    </li>
+
                                    <li class="col-sm-3 col-xs-12">
+
                                        <a href="#photo">
+
                                            <div class="list-item">
+
                                                <div class="icon">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/a/aa/T--NKU_CHINA--fivth-list-icon.png" alt="">
+
                                                </div>
+
                                                <h4><br>Materials<br></h4>
+
                                            </div>
+
                                        </a>
+
                                    </li>
+
                                </ul>
+
                            </div>
+
                        </div>
+
                        <div class="col-md-12">
+
                            <section id="second-tab-group" class="tabgroup">
+
                                <div id="unique">
+
                                    <div class="row">
+
                                        <div class="tab-content-services">
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <h4>OD<sub>600</sub> Reference point</h4>
+
                                                    <p>❏ Add 100μL LUDOX into wells A1, B1, C1, D1  <br>❏ Add 100μL of dd H<sub>2</sub>O into wells A2, B2, C2, D2  <br>❏ Measure absorbance at 600 nm of all samples in the measurement mode you plan to use for cell measurements <br>❏ Record the data in the table below or in your notebook <br>❏ Import data into Excel sheet provided (OD<sub>600</sub> reference point tab)<br><br> </p>
+
                                                    <h4>Particle Standard Curve</h4>
+
                                                    <p>❏ Obtain the tube labeled ”Silica Beads” from the InterLab test kit and vortex vigorously for 30 seconds. <br>❏ Immediately pipet 96 μL microspheres into a 1.5 mL eppendorf tube <br>❏ Add 904μL of ddH<sub>2</sub>O to the microspheres <br>❏ Vortex well. This is your Microsphere Stock Solution. <br>❏ Repeat dilution series for rows B, C, D <br>❏ Re-Mix (Pipette up and down) each row of plate immediately before putting in the plate reader<br>❏ Measure Abs<sub>600</sub> of all samples in instrument <br>❏ Record the data in your notebook <br>❏ Import data into Excel sheet provided (particle standard curve tab) </p>
+
                                                   
+
                                                </div>
+
                                            </div>
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                  <h4>Fluorescence standard curve</h4>
+
                                                    <p>❏ Spin down fluorescein kit tube to make sure pellet is at the bottom of tube. <br>❏ Prepare 10x fluorescein stock solution (100 μM) by resuspending fluorescein in 1            mL of 1xPBS.<br>❏ Dilute the 10x fluorescein stock solution with 1xPBS to make a 1x fluorescein            solution with concentration 10 μM: 100 μL of 10x fluorescein stock into 900 μL 1x              PBS<br>❏ Add 100 μL of PBS into wells A2, B2, C2, D2....A12, B12, C12, D12 <br>❏ Add 200 μL of fluorescein 1x stock solution into A1, B1, C1, D1 <br>❏ Transfer 100 μL of fluorescein stock solution from A1 into A2. <br>❏ Mix A2 by pipetting up and down 3x and transfer 100 μL into A3… <br>❏ Mix A3 by pipetting up and down 3x and transfer 100 μL into A4... <br>❏ Mix A4 by pipetting up and down 3x and transfer 100 μL into A5... <br>❏ Mix A5 by pipetting up and down 3x and transfer 100 μL into A6... <br>❏ Mix A6 by pipetting up and down 3x and transfer 100 μL into A7... <br>❏ Mix A7 by pipetting up and down 3x and transfer 100 μL into A8... <br>❏ Mix A8 by pipetting up and down 3x and transfer 100 μL into A9... <br>❏ Mix A9 by pipetting up and down 3x and transfer 100 μL into A10... <br>❏ Mix A10 by pipetting up and down 3x and transfer 100 μL into A11... <br>❏ Mix A11 by pipetting up and down 3x and transfer 100 μL into liquid waste<br>❏ Repeat dilution series for rows B, C, D <br>❏ Measure fluorescence of all samples in instrument <br>❏ Record the data in your notebook <br>❏ Import data into Excel sheet provided (fluorescein standard curve tab) </p>
+
                                                 
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                    </div>
+
                                </div>
+
                                <div id="theme">
+
                                    <div class="row">
+
                                        <div class="tab-content-services">
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <h4>Competent cells and Transformation</h4>
+
                                                    <p>❏ Resuspend DNA in selected wells in the Distribution Kit with 10µL dH<sub>2</sub>0. <br>❏ Thaw competent cells on ice<br>❏ Pipette 50µL of competent cells into 1.5mL tube<br>❏ Pipette 1µL of resuspended DNA into 1.5mL tube<br>❏ Pipette 1µL of control DNA into 2mL tube<br>❏ Close 1.5mL tubes, incubate on ice for 30min<br>❏ Heat shock tubes at 42°C for 45 sec<br>❏ Incubate on ice for 5min<br>❏ Pipette 950µL SOC media to each transformation<br>❏ Incubate at 37°C for 1 hours, shaking at 200-300rpm<br>❏ Pipette 100µL of each transformation onto petri plates<br>❏ Spin down cells at 6800g for 3mins and discard 800µL of the supernatant. Resuspend the cells in the remaining 100µL, and pipette each transformation onto petri plates<br>❏ Incubate transformations overnight (14-18hr) at 37°C<br>❏ Pick single colonies for PCR<br>❏ Count colonies for control transformation</p>
+
                                                 
+
                                                </div>
+
                                            </div>
+
                                            <div class="col-md-6">
+
                                                <div class="right-image">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/9/9e/T--NKU_CHINA--luanlintupian3.jpg" alt="">
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                    </div>
+
                                </div>
+
                                <div id="translation">
+
                                    <div class="row">
+
                                        <div class="tab-content-services">
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <h4>Cell measurement</h4>
+
                                                    <p>❏ Pick 2 colonies from each of the transformation plates and inoculate in 5-10 mL LB medium +Chloramphenicol. Grow the cells overnight (16-18 hours) at 37°C and 220 rpm<br>❏ Make a 1:10 dilution of each overnight culture in LB+Chloramphenicol (0.5mL of            culture into 4.5mL of LB+Chlor) <br>❏ Measure Abs<sub>600</sub> of these 1:10 diluted cultures <br>❏ Record the data in your notebook <br>❏ Dilute the cultures further to a target Abs<sub>600</sub> of 0.02 in a final volume of 12 mL LB                  medium + Chloramphenicol in 50 mL falcon tube (amber, or covered with foil to block              light).  <br>❏ Take 500 µL samples of the diluted cultures at 0 hours into 1.5 mL eppendorf tubes,                prior to incubation. (At each time point 0 hours and 6 hours, you will take a sample                from each of the 8 devices, two colonies per device, for a total of 16 eppendorf tubes                with 500 µL samples per time point, 32 samples total). Place the samples on ice. <br>❏ Incubate the remainder of the cultures at 37°C and 220 rpm for 6 hours. <br>❏ Take 500 µL samples of the cultures at 6 hours of incubation into 1.5 mL eppendorf                tubes. Place samples on ice. <br>❏ At the end of sampling point you need to measure your samples (Abs<sub>600</sub> and              fluorescence measurement), see the below for details. <br>❏ Record data in your notebook <br>❏ Import data into Excel sheet provided (fluorescence measurement tab) </p>
+
                                                 
+
                                                </div>
+
                                            </div>
+
                                            <div class="col-md-6">
+
                                                <div class="right-image">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/1/15/T--NKU_CHINA--luanlintupian2.jpg" alt="">
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                    </div>
+
                                </div>
+
                                <div id="event">
+
                                    <div class="row">
+
                                        <div class="tab-content-services">
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <h4>CFU per 0.1 OD<sub>600</sub> E. coli cultures</h4>
+
                                                    <p>❏ culture colonies for two Positive Control (BBa_I20270) cultures and your two Negative Control (BBa_R0040) cultures for 16-18 hours <br>❏ Dilute the overnight culture to OD<sub>600</sub> = 0.1 in 1mL of LB + Cam media. Do this in triplicate for each culture. Check the OD<sub>600</sub> and make sure it is 0.1<br>❏ Aseptically spead plate 100 μL on LB + Cam plates for those Final Dilution Factor is 8 x 10<sup>4</sup> or 8 x 10<sup>5</sup> or 8 x 10<sup>6</sup><br>❏ Incubate at 37°C overnight and count colonies after 18-20 hours of growth<br>❏ Count the colonies on each plate with fewer than 300 colonies. Multiple the colony count by the Final Dilution Factor on each plate. </p>
+
                                                 
+
                                                </div>
+
                                            </div>
+
                                            <div class="col-md-6">
+
                                                <div class="right-image">
+
                                                    <img src="https://static.igem.org/mediawiki/2018/5/58/T--NKU_CHINA--luanlintupian1.jpg" alt="">
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                    </div>
+
                                </div>
+
                                <div id="photo">
+
                                    <div class="row">
+
                                        <div class="tab-content-services">
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <h4>HD Images</h4>
+
                                                    <p>Competent cells (Escherichia coli strain DH5α) <br>1mL LUDOX CL-X (provided in kit) <br>300 μL Silica beads - Microsphere suspension (provided in kit, 4.7 x 10<sup>8</sup> microspheres) <br>LB (Luria Bertani) media <br>Fluorescein (provided in kit) <br>10ml 1xPBS pH 7.4-7.6 (phosphate buffered saline; provided by team)  <br>Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH) <br>50 mL Falcon tube (or equivalent, preferably amber or covered in foil to block light)  <br>Incubator at 37°C <br>1.5 mL eppendorf tubes for sample storage <br>Ice bucket with ice <br>Micropipettes and tips <br>96 well plate, black with clear flat bottom preferred (provided by team)</p>
+
                                                 
+
                                                </div>
+
                                            </div>
+
                                            <div class="col-md-6">
+
                                                <div class="left-text">
+
                                                    <p>Devices (from Distribution Kit, all in pSB1C3 backbone): <br>Negative control BBa_R0040 <br>Positive control BBa_I20270 <br>Test Device 1 BBa_J364000  <br>Test Device 2 BBa_J364001 <br>Test Device 3 BBa_J364002<br>Test Device 4 BBa_J364007 <br>Test Device 5 BBa_J364008 <br>Test Device 6 BBa_J364009</p>
+
                                                </div>
+
                                            </div>
+
                                        </div>
+
                                    </div>
+
                                </div>
+
                            </section>
+
                        </div>
+
                    </div>
+
                </div>
+
            </div>
+
        </div>
+
  
 +
<h3 class="text-center" style="font-family: myTitle;font-size: 60px;font-weight: normal;color: white; padding-bottom: 20px;padding-top: 30px;"><img src="https://static.igem.org/mediawiki/2018/a/a6/T--NKU_CHINA--interlab_subnav2.png" style="width: 60px;height: auto;">Methods</h3>
 +
<div class="panel-group" id="methods">
 +
  <div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse3" style="background-color: #89B777;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">OD<sub>600</sub> Reference Point</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse3" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <ul class="interlab-list">
 +
          <li style="font-size: 20px;line-height: 25px;">Add 100 &#181;L LUDOX into wells A1, B1, C1, D1</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Add 100 &#181;L of dd H<sub>2</sub>O into wells A2, B2, C2, D2</li> 
 +
            <li style="font-size: 20px;line-height: 25px;">Measure absorbance at 600 nm of all samples in the measurement mode you plan to use for cell measurements</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Record the data in the table below or in your notebook</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Import data into Excel sheet provided (OD<sub>600</sub> reference point tab)</li>
 +
        </ul>
 +
      </div>
 +
    </div>
 +
  </div>
  
        <section id="portfolio" class="portfolio-section">
+
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
            <div class="container">
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse4" style="background-color: #95BF85;">
                <div class="row">
+
      <h4 class="panel-title" style="height: 35px;">
                    <div class="col-md-12">
+
        <a style="font-size: 25px;">Particle Standard Curve</a>
                        <div class="section-heading">
+
      </h4>
                            <h4>Overview</h4>
+
    </div>
                            <h5>Difficulty in taking reliable and reproducible measurements remains a key obstacle in establishing synthetic biology as an engineering discipline. The Measurement Committee, through the InterLab study, has been developing a robust measurement procedure for green fluorescent protein (GFP) over the last several years. Despite being one of the most commonly used markers in synthetic biology, labs often resort to making relative comparisons, which makes it difficult for labs to share and data and/or constructs.</h5>
+
    <div id="collapse4" class="panel-collapse collapse">
                            <h5>The goal of the fifth iGEM InterLab Study is to identify and correct the sources of systematic variability in synthetic biology measurements by answering the question “Can we reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of OD? ”</h5>
+
      <div class="panel-body">
                            <h5>As we know in the previous study, the fluorescence value measured by a plate reader is an aggregate measurement of an entire population of cells, we need to divide the total fluorescence by the number of cells in order to determine the mean expression level of GFP per cell. Due to the fact that the “optical density (OD) of the sample is an approximation of the number of cells varying from lab to lab, we decided to use a special silica beads that are roughly the same size and shape as a typical E. coli cell to set up a universal, standard “equivalent concentration of beads” measurement.</h5>
+
        <ul class="interlab-list">
                        </div>
+
          <li style="font-size: 20px;line-height: 25px;">Obtain the tube labeled "Silica Beads" from the InterLab test kit and vortex vigorously for 30 seconds</li>
                    </div>
+
            <li style="font-size: 20px;line-height: 25px;">Immediately pipet 96 &#181;L microspheres into a 1.5 mL eppendorf tube</li>
                </div>
+
            <li style="font-size: 20px;line-height: 25px;">Add 904 &#181;L of ddH<sub>2</sub>O to the microspheres</li>
            </div>
+
            <li style="font-size: 20px;line-height: 25px;">Vortex well. This is your Microsphere Stock Solution</li>
        </section>
+
            <li style="font-size: 20px;line-height: 25px;">Repeat dilution series for rows B, C, D</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Re-Mix (Pipette up and down) each row of plate immediately before putting in the plate reader</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Measure Abs<sub>600</sub> of all samples in instrument</li>  
 +
            <li style="font-size: 20px;line-height: 25px;">Record the data in your notebook</li>
 +
            <li style="font-size: 20px;line-height: 25px;">Import data into Excel sheet provided (particle standard curve tab)</li>
 +
        </ul>
 +
      </div>
 +
    </div>
 +
  </div>
  
 +
  <div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse5" style="background-color: #ADCEA1;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">Fluorescence Standard Curve</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse5" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <ul class="interlab-list">
 +
          <li style="font-size: 20px;line-height: 25px;">Spin down fluorescein kit tube to make sure pellet is at the bottom of tube. </li>
 +
<li style="font-size: 20px;line-height: 25px;">Prepare 10x fluorescein stock solution (100 &#181;M) by resuspending fluorescein in 1 mL of 1xPBS</li>
 +
<li style="font-size: 20px;line-height: 25px;">Dilute the 10x fluorescein stock solution with 1xPBS to make a 1x fluorescein solution with concentration 10 &#181;M: 100 &#181;L of 10x fluorescein stock into 900 &#181;L 1xPBS</li>
 +
<li style="font-size: 20px;line-height: 25px;">Add 100 &#181;L of PBS into wells A2, B2, C2, D2...A12, B12, C12, D12</li>
 +
<li style="font-size: 20px;line-height: 25px;">Add 200 &#181;L of fluorescein 1x stock solution into A1, B1, C1, D1</li>
 +
<li style="font-size: 20px;line-height: 25px;">Transfer 100 &#181;L of fluorescein stock solution from A1 into A2</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A2 by pipetting up and down 3x and transfer 100 &#181;L into A3...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A3 by pipetting up and down 3x and transfer 100 &#181;L into A4...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A4 by pipetting up and down 3x and transfer 100 &#181;L into A5...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A5 by pipetting up and down 3x and transfer 100 &#181;L into A6...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A6 by pipetting up and down 3x and transfer 100 &#181;L into A7...</li>
 +
<li style="font-size: 20px;line-height: 25px;" style="font-size: 20px;line-height: 25px;">Mix A7 by pipetting up and down 3x and transfer 100 &#181;L into A8...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A8 by pipetting up and down 3x and transfer 100 &#181;L into A9...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A9 by pipetting up and down 3x and transfer 100 &#181;L into A10...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A10 by pipetting up and down 3x and transfer 100 &#181;L into A11...</li>
 +
<li style="font-size: 20px;line-height: 25px;">Mix A11 by pipetting up and down 3x and transfer 100 &#181;L into liquid waste</li>
 +
<li style="font-size: 20px;line-height: 25px;">Repeat dilution series for rows B, C, D</li>
 +
<li style="font-size: 20px;line-height: 25px;">Measure fluorescence of all samples in instrument</li>
 +
<li style="font-size: 20px;line-height: 25px;">Record the data in your notebook</li>
 +
<li style="font-size: 20px;line-height: 25px;">Import data into Excel sheet provided (fluorescein standard curve tab)</li>
 +
</ul>
 +
      </div>
 +
    </div>
 +
  </div>
  
        <section class="tabs-content" id="blog">
+
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
            <div class="container">
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse6" style="background-color: #C3DBBA;">
                <div class="row">
+
      <h4 class="panel-title" style="height: 35px;">
                    <div class="col-md-12">
+
        <a style="font-size: 25px;">Competent Cells and Transformation</a>
                        <div class="section-heading">
+
      </h4>
                            <h4>RESULTS</h4>
+
    </div>
                           
+
    <div id="collapse6" class="panel-collapse collapse">
                        </div>
+
      <div class="panel-body">
                    </div>
+
        <ul class="interlab-list">
                </div>
+
          <li style="font-size: 20px;line-height: 25px;">Resuspend DNA in selected wells in the Distribution Kit with 10 &#181L dH<sub>2</sub>O</li>
                <div class="row">
+
<li style="font-size: 20px;line-height: 25px;">Thaw competent cells on ice</li>
                    <div class="wrapper">
+
<li style="font-size: 20px;line-height: 25px;">Pipette 50 &#181;L of competent cells into 1.5 mL tube</li>
                        <div class="col-md-6">
+
<li style="font-size: 20px;line-height: 25px;">Pipette 1 &#181;L of resuspended DNA into 1.5 mL tube</li>
                            <ul class="tabs clearfix" data-tabgroup="first-tab-group">
+
<li style="font-size: 20px;line-height: 25px;">Pipette 1 &#181;L of control DNA into 2 mL tube</li>
                                <li><a href="#tab1" class="active">
+
<li style="font-size: 20px;line-height: 25px;">Close 1.5 mL tubes, incubate on ice for 30 min</li>
                                    OD<sub>600</sub> Reference point
+
<li style="font-size: 20px;line-height: 25px;">Heat shock tubes at 42&#176;C for 45 sec</li>
                                 
+
<li style="font-size: 20px;line-height: 25px;">Incubate on ice for 5 min</li>
                                </a></li>
+
<li style="font-size: 20px;line-height: 25px;">Pipette 950 &#181;L SOC media to each transformation</li>
                                <li><a href="#tab2">
+
<li style="font-size: 20px;line-height: 25px;">Incubate at 37&#176;C for 1 hours, shaking at 200-300 rpm</li>
                                    Particle standard curve
+
<li style="font-size: 20px;line-height: 25px;">Pipette 100 &#181;L of each transformation onto petri plates</li>
                                   
+
<li style="font-size: 20px;line-height: 25px;">Spin down cells at 6800 g for 3 min and discard 800 &#181;L of the supernatant. Resuspend the cells in the remaining 100 &#181;L, and pipette each transformation onto petri plates</li>
                                </a></li>
+
<li style="font-size: 20px;line-height: 25px;">Incubate transformations overnight (14-18 hr) at 37&#176;C</li>
                                <li><a href="#tab3">
+
<li style="font-size: 20px;line-height: 25px;">Pick single colonies for PCR</li>
                                    Fluorescein standard curve
+
<li style="font-size: 20px;line-height: 25px;">Count colonies for control transformation</li>
                                 
+
</ul>
                                </a></li>
+
      </div>
                                <li><a href="#tab4">
+
    </div>
                                    Fluorescence Raw Readings
+
  </div>
                                 
+
 
                                </a></li>
+
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
                                <li><a href="#tab5">
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse7" style="background-color: #D3E5CE;">
                                    Abs<sub>600</sub> Raw Readings
+
      <h4 class="panel-title" style="height: 35px;">
                                   
+
        <a style="font-size: 25px;">Cell Measurement</a>
                                </a></li>
+
      </h4>
                            </ul>
+
    </div>
                        </div>
+
    <div id="collapse7" class="panel-collapse collapse">
                        <div class="col-md-6">
+
      <div class="panel-body">
                            <div id="first-tab-group" class="tabgroup">
+
        <ul class="interlab-list">
                                <div id="tab1">
+
          <li style="font-size: 20px;line-height: 25px;">Pick 2 colonies from each of the transformation plates and inoculate in 5-10 mL LB medium + Chloramphenicol. Grow the cells overnight (16-18 hours) at 37&#176;C and 220 rpm</li>
                                    <img src="https://static.igem.org/mediawiki/2018/8/83/T--NKU_CHINA--blog-post-1.jpg" alt="">
+
<li style="font-size: 20px;line-height: 25px;">Make a 1:10 dilution of each overnight culture in LB + Chloramphenicol (0.5 mL of culture into 4.5 mL of LB + Chlor)</li>
                                    <div class="text-content">
+
<li style="font-size: 20px;line-height: 25px;">Measure Abs<sub>600</sub> of these 1:10 diluted cultures</li>  
                                        <h4>OD<sub>600</sub> Reference point</h4>
+
<li style="font-size: 20px;line-height: 25px;">Record the data in your notebook</li>
                                        <p>According to the Reference OD<sub>600</sub>, We calculate the final result: <br>OD<sub>600</sub>/Abs<sub>600</sub>=3.818 <br>All cell density readings using this instrument with the same settings and volume can be converted to OD<sub>600</sub>, so that we can use this ratio to convert subsequent experimental data</p>
+
<li style="font-size: 20px;line-height: 25px;">Dilute the cultures further to a target Abs<sub>600</sub> of 0.02 in a final volume of 12 mL LB medium + Chloramphenicol in 50 mL falcon tube (amber, or covered with foil to block light)</li>  
                                    </div>
+
<li style="font-size: 20px;line-height: 25px;">Take 500 &#181;L samples of the diluted cultures at 0 hours into 1.5 mL Eppendorf tubes, prior to incubation. (At each time point 0 hours and 6 hours, you will take a sample from each of the 8 devices, two colonies per device, for a total of 16 Eppendorf tubes with 500 &#181;L samples per time point, 32 samples total). Place the samples on ice</li>
                                </div>
+
<li style="font-size: 20px;line-height: 25px;">Incubate the remainder of the cultures at 37&#176;C and 220 rpm for 6 hours</li>
                                <div id="tab2">
+
<li style="font-size: 20px;line-height: 25px;">Take 500 &#181;L samples of the cultures at 6 hours of incubation into 1.5 mL Eppendorf tubes. Place samples on ice</li>  
                                    <img src="https://static.igem.org/mediawiki/2018/c/c6/T--NKU_CHINA--blog-post-2.jpg" alt="">
+
<li style="font-size: 20px;line-height: 25px;">At the end of sampling point you need to measure your samples (Abs<sub>600</sub> and fluorescence measurement), see the below for details</li>
                                    <img src="https://static.igem.org/mediawiki/2018/2/27/T--NKU_CHINA--tupian6.jpg" alt="">
+
<li style="font-size: 20px;line-height: 25px;">Record data in your notebook</li>
                                    <div class="text-content">
+
<li style="font-size: 20px;line-height: 25px;">Import data into Excel sheet provided (fluorescence measurement tab)</li>
                                        <h4>Particle standard curve</h4>
+
</ul>
                                        <p>We prepare a dilution series of monodisperse silica microspheres and measure the Abs<sub>600</sub> in plate reader. The size and optical characteristics of these microspheres are similar to cells, and there is a known amount of particles per volume. This measurement allows us to construct a standard curve of particle concentration which can be used to convert Abs<sub>600</sub> measurements to an estimated number of cells.<br>The final result:<br>mean of med-high levels=6.24E+08</p>
+
      </div>
                                    </div>
+
    </div>
                                </div>
+
  </div>
                                <div id="tab3">
+
 
                                    <img src="https://static.igem.org/mediawiki/2018/6/69/T--NKU_CHINA--blog-post-3.jpg" alt="">
+
  <div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
                                    <img src="https://static.igem.org/mediawiki/2018/4/41/T--NKU_CHINA--tupian7.jpg" alt="">
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#methods" data-target="#collapse8" style="background-color: #E7F1E4;">
                                    <div class="text-content">
+
      <h4 class="panel-title" style="height: 35px;"  id="thirdpart">
                                        <h4>Fluorescein standard curve</h4>
+
        <a style="font-size: 25px;">CFU per 0.1 OD<sub>600</sub> <i>E.coli</i> Cultures</a>
                                        <p>We prepare a dilution series of fluorescein in four replicates and measure the fluorescence in a 96 well plate in plate reader. By measuring these we generate a standard curve of fluorescence for fluorescein concentration. We will be able to use this to convert our cell based readings to an equivalent fluorescein concentration.<br>The final result:<br>Mean uM fluorescein / a.u.=3.60E-05<br>MEFL / a.u.=2.17E+08</p>
+
      </h4>
                                    </div>
+
    </div>
                                </div>
+
    <div id="collapse8" class="panel-collapse collapse">
                                <div id="tab4">
+
      <div class="panel-body">
                                    <img src="https://static.igem.org/mediawiki/2018/0/0c/T--NKU_CHINA--图片10.jpg" alt="">
+
        <ul class="interlab-list">
                                    <img src="https://static.igem.org/mediawiki/2018/f/fb/T--NKU_CHINA--图片9.jpg" alt="">
+
          <li style="font-size: 20px;line-height: 25px;">Culture colonies for two Positive Control (BBa_I20270) cultures and your two Negative Control (BBa_R0040) cultures for 16-18 hours</li>
                                    <div class="text-content">
+
<li style="font-size: 20px;line-height: 25px;">Dilute the overnight culture to OD<sub>600</sub> = 0.1 in 1 mL of LB + Cam media. Do this in triplicate for each culture. Check the OD<sub>600</sub> and make sure it is 0.1</li>
                                        <h4>Fluorescence Raw Readings</h4>
+
<li style="font-size: 20px;line-height: 25px;">Aseptically spead plate 100 &#181;L on LB + Cam plates for those Final Dilution Factor is 8 x 10<sup>4</sup> or 8 x 10<sup>5</sup> or 8 x 10<sup>6</sup></li>
                                     
+
<li style="font-size: 20px;line-height: 25px;">Incubate at 37&#176;C overnight and count colonies after 18-20 hours of growth</li>
                                    </div>
+
<li style="font-size: 20px;line-height: 25px;">Count the colonies on each plate with fewer than 300 colonies. Multiple the colony count by the Final Dilution Factor on each plate</li>
                                </div>
+
</ul>
                                <div id="tab5">
+
      </div>
                                    <img src="https://static.igem.org/mediawiki/2018/6/68/T--NKU_CHINA--图片11.jpg" alt="">
+
    </div>
                                    <img src="https://static.igem.org/mediawiki/2018/e/e4/T--NKU_CHINA--图片12.jpg" alt="">
+
  </div>
                                    <div class="text-content">
+
</div>
                                        <h4>Abs<sub>600</sub> Raw Readings</h4>
+
</div>
                                       
+
 
                                    </div>
+
<h3 class="text-center" style="font-family: myTitle;font-size: 60px;font-weight: normal;color: white;padding-bottom: 20px;padding-top: 30px;"><img src="https://static.igem.org/mediawiki/2018/a/ac/T--NKU_CHINA--interlab_subnav3.png" style="width: 60px;height: auto;">Results</h3>
                                </div>
+
<div class="panel-group" id="results">
                            </div>
+
  <div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
                        </div>
+
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#results" data-target="#collapse9" style="background-color: #A098B6;">
                     </div>
+
      <h4 class="panel-title" style="height: 35px;">
                 </div>
+
        <a style="font-size: 25px;">OD<sub>600</sub> Reference Point</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse9" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <img src="https://static.igem.org/mediawiki/2018/6/60/T--NKU_CHINA--OD600Reference_point.png" class="img-responsive center-block">
 +
        <p style="font-size: 20px;line-height: 25px;margin-left: 10px;color: #000">According to the Reference OD<sub>600</sub>, We calculate the final result: <br>
 +
OD<sub>600</sub>/Abs<sub>600</sub>=3.818 <br>
 +
All cell density readings using this instrument with the same settings and volume can be converted to OD<sub>600</sub>, so that we can use this ratio to convert subsequent experimental data.
 +
</p>
 +
</div>
 +
    </div>
 +
  </div>
 +
 
 +
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#results" data-target="#collapse10" style="background-color: #B7B1C8;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">Particle Standard Curve</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse10" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <img src="https://static.igem.org/mediawiki/2018/3/35/T--NKU_CHINA--ParticleStandardCurve_list.png" class="img-responsive center-block">
 +
        <p style="font-size: 20px;line-height: 25px;margin-left: 10px;color: #000">We prepare a dilution series of monodisperse silica microspheres and measure the Abs<sub>600</sub> in plate reader. The size and optical characteristics of these microspheres are similar to cells, and there is a known amount of particles per volume. This measurement allows us to construct a standard curve of particle concentration which can be used to convert Abs<sub>600</sub> measurements to an estimated number of cells.  
 +
        </p>
 +
        <img src="https://static.igem.org/mediawiki/2018/5/56/T--NKU_CHINA--Curve_Logscale.png" class="img-responsive center-block">
 +
        <p style="font-size: 20px;line-height: 25px;margin-left: 10px;color: #000">The final result:<br>mean of med-high levels=6.24E+08</p>
 +
</div>
 +
    </div>
 +
  </div>
 +
 
 +
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor"  data-toggle="collapse" data-parent="#results" data-target="#collapse11" style="background-color: #D1CDDC;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">Fluorescein Standard Curve</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse11" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <p style="font-size: 20px;line-height: 25px;margin-left: 10px;color: #000"> We prepare a dilution series of fluorescein in four replicates and measure the fluorescence in a 96 well plate in plate reader. By measuring these we generate a standard curve of fluorescence for fluorescein concentration. We will be able to use this to convert our cell based readings to an equivalent fluorescein concentration.
 +
        </p>
 +
        <img src="https://static.igem.org/mediawiki/2018/d/d1/T--NKU_CHINA--FluoresceinStandardcurve_list.png" class="img-responsive center-block">
 +
        <img src="https://static.igem.org/mediawiki/2018/0/00/T--NKU_CHINA--FluoresceinStandardCurve_logscale.png" class="img-responsive center-block">
 +
        <p style="font-size: 20px;line-height: 25px;margin-left: 10px;color: #000"> Final results:<br>Mean &#181;M fluorescein / a.u.=3.60E-05<br>MEFL / a.u.=2.17E+08</p>
 +
</div>
 +
    </div>
 +
  </div>
 +
 
 +
<div class="panel panel-default" style="margin-right: 10%;margin-left: 10%;">
 +
    <div class="panel-heading panelheadingcursor" data-toggle="collapse" data-parent="#results" data-target="#collapse12" style="background-color: #EAE8EF;">
 +
      <h4 class="panel-title" style="height: 35px;">
 +
        <a style="font-size: 25px;">Raw Plate Reader Measurements</a>
 +
      </h4>
 +
    </div>
 +
    <div id="collapse12" class="panel-collapse collapse">
 +
      <div class="panel-body">
 +
        <img src="https://static.igem.org/mediawiki/2018/3/39/T--NKU_CHINA--RawPlateReader_Measurements1.png" class="img-responsive center-block">
 +
        <hr>
 +
        <img src="https://static.igem.org/mediawiki/2018/2/28/T--NKU_CHINA--RawPlateReader_Measurements2.png" class="img-responsive center-block">
 +
</div>
 +
    </div>
 +
  </div>
 +
</div>
 +
</div>
 +
</main>
 +
<footer>
 +
<div class="container-fluid myFooter">
 +
<div class="row">
 +
<div class="col-xs-8 col-xs-push-1">
 +
<img src="https://static.igem.org/mediawiki/2018/0/0b/T--NKU_CHINA--duihui_final.png" style="height: 250px; width: auto;">
 +
</div>
 +
<div class="col-xs-4 footer-w3ls">
 +
<h3 style="color: white; font-size: 30px;">Contacts</h3>
 +
<ul class="social-icons1" style="margin:0 auto;padding-top:0;">
 +
<li><a href="#"><i class="fa fa-facebook" aria-hidden="true"></i></a></li>
 +
<li><a href="https://twitter.com/iGEMNKU2018"><i class="fa fa-twitter" aria-hidden="true"></i></a></li>
 +
<li><a href="mailto:nkuigem2018@163.com"><i class="fa fa fa-envelope-o" aria-hidden="true"></i></a></li>
 +
    </ul>
 +
    <h3 style="color: white; font-size: 30px;">Address</h3>
 +
                <address style="color: white; font-size: 17px;">
 +
                    Nankai University</br>
 +
                    No.94 Weijin Road, Nankai District</br>
 +
                     Tianjin, P.R.China 300071</br>
 +
                 </address>
 
             </div>
 
             </div>
        </section>
+
            <div class="col-xs-12">
       
+
            <p class="Copyright" style="text-align: center; color: white;">Copyright © Team NKU_CHINA 2018</p>
        <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js2?action=raw&ctype=text/javascript"></script>
+
         </div>
        <script>window.jQuery || document.write('<script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js3?action=raw&ctype=text/javascript"><\/script>')</script>
+
    </div>
        <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js4?action=raw&ctype=text/javascript"></script>
+
</footer>
         <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js5?action=raw&ctype=text/javascript"></script>
+
        <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js6?action=raw&ctype=text/javascript"></script>
+
  
     
 
        <script src="https://2018.igem.org/Team:NKU_CHINA/interlab/js7?action=raw&ctype=text/javascript"></script>
 
       
 
        <!-- templatemo 406 flex -->
 
 
<a href="#0" class="cd-top">Top</a>
 
<a href="#0" class="cd-top">Top</a>
    </body>
+
</body>
 
</html>
 
</html>
{{Template:NKU_CHINA/footer}}
 

Latest revision as of 07:27, 1 October 2018

Overview

Poverty in taking reliable and repeatable measurements remains a key obstacle in establishing synthetic biology as an engineering discipline. The Measurement Committee has been studying the measurement procedure for green fluorescent protein (GFP) over the last several years by interlab. The most commonly used markers though GFP is in synthetic biology, labs often resort to making relative comparisons, which makes it difficult for labs to share and data and/or constructs.

The goal of the fifth iGEM InterLab Study is to identify and correct the sources of systematic variability in synthetic biology measurements by answering the question "Can we reduce lab-to-lab variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of OD? "

As we know in the previous study, the fluorescence value measured by a plate reader is an aggregate measurement of an entire population of cells, we need to divide the total fluorescence by the number of cells in order to determine the mean expression level of GFP per cell. Due to the fact that the "optical density (OD)" of the sample is an approximation of the number of cells varying from lab to lab, we decided to use a special silica beads that are roughly the same size and shape as a typical E. coli cell to set up a universal, standard "equivalent concentration of beads" measurement.

Materials

  • Competent cells (Escherichia coli strain DH5α)
  • 1 mL LUDOX CL-X (provided in kit)
  • 300 µL Silica beads - Microsphere suspension (provided in kit, 4.7 x 108 microspheres)
  • LB (Luria Bertani) media
  • Fluorescein (provided in kit)
  • 10 mL 1xPBS pH 7.4-7.6 (phosphate buffered saline; provided by team)
  • Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH)
  • 50 mL Falcon tube (or equivalent, preferably amber or covered in foil to block light)
  • Incubator at 37°C
  • 1.5 mL eppendorf tubes for sample storage
  • Ice bucket with ice
  • Micropipettes and tips
  • 96 well plate, black with clear flat bottom preferred (provided by team)
From Distribution Kit, all in pSB1C3 backbone:
  • Negative control BBa_R0040
  • Positive control BBa_I20270
  • Test Device 1 BBa_J364000
  • Test Device 2 BBa_J364001
  • Test Device 3 BBa_J364002
  • Test Device 4 BBa_J364007
  • Test Device 5 BBa_J364008
  • Test Device 6 BBa_J364009

Methods

  • Add 100 µL LUDOX into wells A1, B1, C1, D1
  • Add 100 µL of dd H2O into wells A2, B2, C2, D2
  • Measure absorbance at 600 nm of all samples in the measurement mode you plan to use for cell measurements
  • Record the data in the table below or in your notebook
  • Import data into Excel sheet provided (OD600 reference point tab)
  • Obtain the tube labeled "Silica Beads" from the InterLab test kit and vortex vigorously for 30 seconds
  • Immediately pipet 96 µL microspheres into a 1.5 mL eppendorf tube
  • Add 904 µL of ddH2O to the microspheres
  • Vortex well. This is your Microsphere Stock Solution
  • Repeat dilution series for rows B, C, D
  • Re-Mix (Pipette up and down) each row of plate immediately before putting in the plate reader
  • Measure Abs600 of all samples in instrument
  • Record the data in your notebook
  • Import data into Excel sheet provided (particle standard curve tab)
  • Spin down fluorescein kit tube to make sure pellet is at the bottom of tube.
  • Prepare 10x fluorescein stock solution (100 µM) by resuspending fluorescein in 1 mL of 1xPBS
  • Dilute the 10x fluorescein stock solution with 1xPBS to make a 1x fluorescein solution with concentration 10 µM: 100 µL of 10x fluorescein stock into 900 µL 1xPBS
  • Add 100 µL of PBS into wells A2, B2, C2, D2...A12, B12, C12, D12
  • Add 200 µL of fluorescein 1x stock solution into A1, B1, C1, D1
  • Transfer 100 µL of fluorescein stock solution from A1 into A2
  • Mix A2 by pipetting up and down 3x and transfer 100 µL into A3...
  • Mix A3 by pipetting up and down 3x and transfer 100 µL into A4...
  • Mix A4 by pipetting up and down 3x and transfer 100 µL into A5...
  • Mix A5 by pipetting up and down 3x and transfer 100 µL into A6...
  • Mix A6 by pipetting up and down 3x and transfer 100 µL into A7...
  • Mix A7 by pipetting up and down 3x and transfer 100 µL into A8...
  • Mix A8 by pipetting up and down 3x and transfer 100 µL into A9...
  • Mix A9 by pipetting up and down 3x and transfer 100 µL into A10...
  • Mix A10 by pipetting up and down 3x and transfer 100 µL into A11...
  • Mix A11 by pipetting up and down 3x and transfer 100 µL into liquid waste
  • Repeat dilution series for rows B, C, D
  • Measure fluorescence of all samples in instrument
  • Record the data in your notebook
  • Import data into Excel sheet provided (fluorescein standard curve tab)
  • Resuspend DNA in selected wells in the Distribution Kit with 10 &#181L dH2O
  • Thaw competent cells on ice
  • Pipette 50 µL of competent cells into 1.5 mL tube
  • Pipette 1 µL of resuspended DNA into 1.5 mL tube
  • Pipette 1 µL of control DNA into 2 mL tube
  • Close 1.5 mL tubes, incubate on ice for 30 min
  • Heat shock tubes at 42°C for 45 sec
  • Incubate on ice for 5 min
  • Pipette 950 µL SOC media to each transformation
  • Incubate at 37°C for 1 hours, shaking at 200-300 rpm
  • Pipette 100 µL of each transformation onto petri plates
  • Spin down cells at 6800 g for 3 min and discard 800 µL of the supernatant. Resuspend the cells in the remaining 100 µL, and pipette each transformation onto petri plates
  • Incubate transformations overnight (14-18 hr) at 37°C
  • Pick single colonies for PCR
  • Count colonies for control transformation
  • Pick 2 colonies from each of the transformation plates and inoculate in 5-10 mL LB medium + Chloramphenicol. Grow the cells overnight (16-18 hours) at 37°C and 220 rpm
  • Make a 1:10 dilution of each overnight culture in LB + Chloramphenicol (0.5 mL of culture into 4.5 mL of LB + Chlor)
  • Measure Abs600 of these 1:10 diluted cultures
  • Record the data in your notebook
  • Dilute the cultures further to a target Abs600 of 0.02 in a final volume of 12 mL LB medium + Chloramphenicol in 50 mL falcon tube (amber, or covered with foil to block light)
  • Take 500 µL samples of the diluted cultures at 0 hours into 1.5 mL Eppendorf tubes, prior to incubation. (At each time point 0 hours and 6 hours, you will take a sample from each of the 8 devices, two colonies per device, for a total of 16 Eppendorf tubes with 500 µL samples per time point, 32 samples total). Place the samples on ice
  • Incubate the remainder of the cultures at 37°C and 220 rpm for 6 hours
  • Take 500 µL samples of the cultures at 6 hours of incubation into 1.5 mL Eppendorf tubes. Place samples on ice
  • At the end of sampling point you need to measure your samples (Abs600 and fluorescence measurement), see the below for details
  • Record data in your notebook
  • Import data into Excel sheet provided (fluorescence measurement tab)
  • Culture colonies for two Positive Control (BBa_I20270) cultures and your two Negative Control (BBa_R0040) cultures for 16-18 hours
  • Dilute the overnight culture to OD600 = 0.1 in 1 mL of LB + Cam media. Do this in triplicate for each culture. Check the OD600 and make sure it is 0.1
  • Aseptically spead plate 100 µL on LB + Cam plates for those Final Dilution Factor is 8 x 104 or 8 x 105 or 8 x 106
  • Incubate at 37°C overnight and count colonies after 18-20 hours of growth
  • Count the colonies on each plate with fewer than 300 colonies. Multiple the colony count by the Final Dilution Factor on each plate

Results

According to the Reference OD600, We calculate the final result:
OD600/Abs600=3.818
All cell density readings using this instrument with the same settings and volume can be converted to OD600, so that we can use this ratio to convert subsequent experimental data.

We prepare a dilution series of monodisperse silica microspheres and measure the Abs600 in plate reader. The size and optical characteristics of these microspheres are similar to cells, and there is a known amount of particles per volume. This measurement allows us to construct a standard curve of particle concentration which can be used to convert Abs600 measurements to an estimated number of cells.

The final result:
mean of med-high levels=6.24E+08

We prepare a dilution series of fluorescein in four replicates and measure the fluorescence in a 96 well plate in plate reader. By measuring these we generate a standard curve of fluorescence for fluorescein concentration. We will be able to use this to convert our cell based readings to an equivalent fluorescein concentration.

Final results:
Mean µM fluorescein / a.u.=3.60E-05
MEFL / a.u.=2.17E+08

Top