Difference between revisions of "Team:WHU-China/Description"

Line 5: Line 5:
 
<title>Description</title>
 
<title>Description</title>
 
<style>
 
<style>
.background {
+
#content{
overflow: visible;
+
background:#C1F2FF;
visibility: visible;
+
}
z-index:-1;
+
.c_row{
position: realative;
+
margin: 0 auto;
width: 100%;
+
width:1200px;
top: 0px;
+
}
left: 0px;
+
html{
height: auto;
+
margin:0;
}
+
padding:0;
.pD1 {
+
height:100%;
position: absolute;
+
weight:100%;
visibility: visible;
+
}
z-index: 0;
+
body{
height: 50%;
+
  background:#C1F2FF;
width: 40%;
+
  font-family:"Microsoft YaHei","Segoe UI", "Lucida Grande", Helvetica, Arial,sans-serif;
left: 5%;
+
  overflow-y:auto;
top: 20%;
+
  overflow-x:hidden;
right: 70%;
+
}
bottom: 10%;
+
p{
}
+
  font-size:24px;
.pD2 {
+
}
position: absolute;
+
h1{
visibility: visible;
+
  font-size:34px;
z-index: 0;
+
  font-weight:400;
height: 45%;
+
}
width: 18%;
+
h2{
left: 10%;
+
  font-size:30px;
top: 2%;
+
  font-weight:400;
right: 70%;
+
  position:relative;
bottom: 10%;
+
  left:20px;
}
+
    }
.pD3 {
+
h3{
position: absolute;
+
  font-size:28px;
visibility: visible;
+
  font-weight:400;
z-index: 0;
+
  position:relative;
height: 45%;
+
  left:30px;
width: 18%;
+
    }
left: 10%;
+
top: 52%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD4 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 30%;
+
width: 30%;
+
left: 5%;
+
top: 5%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD6 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 30%;
+
width: 30%;
+
left:  35%;
+
top: 5%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD5 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 30%;
+
width: 30%;
+
left: 65%;
+
top: 5%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD7 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 20%;
+
width: 50%;
+
left: 5%;
+
top: 15%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD8 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 30%;
+
width: 30%;
+
left: 65%;
+
top: 15%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD9 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 20%;
+
width: 50%;
+
left: 5%;
+
top: 45%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD10 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 30%;
+
width: 30%;
+
left: 65%;
+
top: 60%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD11 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 20%;
+
width: 50%;
+
left: 5%;
+
top: 65%;
+
right: 70%;
+
bottom: 10%;
+
}
+
.pD12 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 50%;
+
width: 20%;
+
left: 75%;
+
top: 25%;
+
right: 70%;
+
bottom: 10%;
+
}
+
  
.pD13 {
+
h4{
position: absolute;
+
  font-size:26px;
visibility: visible;
+
  font-weight:400;
z-index: 0;
+
  position:relative;
height: 35%;
+
  left:40px;
width: 40%;
+
    }
left: 10%;
+
top: 60%;
+
right: 70%;
+
bottom: 10%;
+
}
+
  
.pD14 {
+
img{
position: absolute;
+
width:100%;
visibility: visible;
+
height:100%;
z-index: 0;
+
max-height:100%;
height: 35%;
+
max-width:100%;
width: 40%;
+
left: 5%;
+
top: 10%;
+
right: 70%;
+
bottom: 10%;
+
}
+
 
+
.pD15 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 35%;
+
width: 40%;
+
left: 5%;
+
top: 60%;
+
right: 70%;
+
bottom: 10%;
+
}
+
 
+
.pD16 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 35%;
+
width: 25%;
+
left: 65%;
+
top: 60%;
+
right: 70%;
+
bottom: 10%;
+
}
+
 
+
.pD17 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 35%;
+
width: 40%;
+
left: 10%;
+
top: 50%;
+
right: 70%;
+
bottom: 10%;
+
}
+
 
+
.pD18 {
+
position: absolute;
+
visibility: visible;
+
z-index: 0;
+
height: 35%;
+
width: 40%;
+
left: 50%;
+
top: 50%;
+
right: 70%;
+
bottom: 10%;
+
}
+
 
+
.div {
+
position:relative;
+
 
}
 
}
 
.div_w1 {
 
z-index: 0;
 
position: absolute;
 
left: 50%;
 
top: 10%;
 
right: 10%;
 
bottom: 10%;
 
height: 25%;
 
width: 45%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
font-family:Arial, Helvetica, sans-serif;
 
}
 
.div_w2 {
 
z-index: 0;
 
position: absolute;
 
left: 50%;
 
top: 40%;
 
right: 10%;
 
bottom: 10%;
 
height: 45%;
 
width: 45%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
.div_w3 {
 
z-index: 0;
 
position: absolute;
 
left: 35%;
 
top: 5%;
 
right: 10%;
 
bottom: 10%;
 
height: 40%;
 
width: 60%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
.div_w4 {
 
z-index: 0;
 
position: absolute;
 
left: 35%;
 
top: 57%;
 
right: 10%;
 
bottom: 10%;
 
height: 40%;
 
width: 60%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
.div_w5 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 40%;
 
right: 10%;
 
bottom: 10%;
 
height: 50%;
 
width: 90%;
 
filter: alpha(Opacity=80);
 
-moz-opacity: 0.5;
 
opacity: 0.5;
 
background-color: #ffffff;
 
}
 
 
.div_w6 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 3%;
 
right: 10%;
 
bottom: 10%;
 
height: 12%;
 
width: 50%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w7 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 30%;
 
right: 10%;
 
bottom: 10%;
 
height: 14%;
 
width: 50%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w8 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 60%;
 
right: 10%;
 
bottom: 10%;
 
height: 7%;
 
width: 50%;
 
filter: alpha(Opacity=80);
 
-moz-opacity: 0.5;
 
opacity: 0.5;
 
background-color: #ffffff;
 
}
 
 
.div_w9 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 80%;
 
right: 10%;
 
bottom: 10%;
 
height: 17%;
 
width: 50%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w10 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 10%;
 
right: 10%;
 
bottom: 10%;
 
height: 10%;
 
width: 65%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w11 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 25%;
 
right: 10%;
 
bottom: 10%;
 
height: 50%;
 
width: 65%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w12 {
 
z-index: 0;
 
position: absolute;
 
left: 5%;
 
top: 10%;
 
right: 10%;
 
bottom: 10%;
 
height: 45%;
 
width: 90%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w13 {
 
z-index: 0;
 
position: absolute;
 
left: 45%;
 
top: 5%;
 
right: 10%;
 
bottom: 10%;
 
height: 25%;
 
width: 52%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w14 {
 
z-index: 0;
 
position: absolute;
 
left: 45%;
 
top: 35%;
 
right: 10%;
 
bottom: 10%;
 
height: 15%;
 
width: 52%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
.div_w15 {
 
z-index: 0;
 
position: absolute;
 
left: 15%;
 
top: 15%;
 
right: 10%;
 
bottom: 10%;
 
height: 20%;
 
width: 55%;
 
filter:alpha(Opacity=80);
 
-moz-opacity:0.5;
 
opacity: 0.5;
 
background-color:#ffffff;
 
}
 
 
 
 
</style>
 
</style>
 
</head>
 
</head>
 
 
<body>
 
<body>
 
+
<div class="c_row">
<div class="div">
+
  <p style="font-size:22px;">To solve this environmental problem that caused by CC, we invent this Ark! It can float on the surface of water and use solar energy to collect CC like a “marine cage”.</p>
  <img class="background" src="https://static.igem.org/mediawiki/2018/d/da/T--WHU-China--wiki-prod.jpg" width="100%" height="100%" />
+
</div>
 
+
<div class="c_row">
  </div>
+
  <div style="float:left;width:500px;">
<div class="div">
+
  <img src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-description_main1.png">
<img class="background" src="https://static.igem.org/mediawiki/2018/f/f0/T--WHU-China--wiki-pro.jpg" width="100%" height="100%" />
+
+
</div>
+
<div class="div">
+
  <img class="background" src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-pro2.jpg" width="100%" height="100%" />
+
  <img class="pD1" src="https://static.igem.org/mediawiki/2018/2/27/T--WHU-China--wiki-D1.png" />
+
<div class="div_w1">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  In this part, we mainly explain the design related to the biological part. This year we want to use the Ark to recover the phosphorus. The part of the bio device responsible for recycling the element (phosphorus) is called the bio-conveyor.
+
  </p>
+
  </div>
+
  <div class="div_w2">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  This conveyor can carry our engineering bacteria for the recovery of phosphorus. The conveyor belt will carry our engineering bacteria in different environments, and express different proteins in different environments to specifically recover the phosphorus in the environment. The conveyor belt mainly includes two biological pathways, one is the construction of the conveyor belt (the symbiosis of the bacteria and algae), and the other is the phosphorus recovery system of the conveyor belt (the circulation control pathway).
+
  </p>
+
  </div>
+
 
  </div>
 
  </div>
+
</div>
<div class="div">
+
  
<img class="background" src="https://static.igem.org/mediawiki/2018/f/f0/T--WHU-China--wiki-pro.jpg" width="100%" height="100%" />
+
<div class="c_row" style="clear:both;">
  <img class="pD2" src="https://static.igem.org/mediawiki/2018/1/1e/T--WHU-China--wiki-D2.png" />
+
  <div style="float:left;width:700px;margin:200px auto;">
  <div class="div_w3">
+
  <p style="font-size:22px;">So you may wonder, how can we do that? The Ark has been carefully designed : The core device is <span style="color:red;font-weight:500;">bio-conveyor</span>. There is a track  which our biofilm adhere to and it can shuttle between environment and interior periodically. The track and biofilm constitute bio-conveyor.</p>
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  The construction of the conveyor is not an easy thing! In addition to the most critical energy input problem,to some extent, our engineered bacteria are directly exposed to threats from environmental pollutants, and it is necessary to confer bacterial resistance. Moreover, the phosphorus-concentrating efficiency of engineering bacteria is also affected by many environmental factors. If there is no stable environment, the whole system will be greatly affected, so it is unreliable to fix the bacteria directly on the conveyor matrix.
+
  </p>
+
  </div>
+
+
<div class="div_w4">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  After several HP and brainstorming and extensive literature review, we decided to use synthetic biology to build multi-biological systems. Through literature search, algae and bacteria have good phase, algae can provide engineering bacteria energy through photosynthesis, and The extracellular matrix EPS of algae can confer excellent environmental resistance to bacteria, and the growth state of the bacteria is also stable in the symbiotic system of bacteria and algae.
+
  </p>
+
  </div>
+
<img class="pD3" src="https://static.igem.org/mediawiki/2018/3/30/T--WHU-China--wiki-D3.png" />  
+
 
  </div>
 
  </div>
<div class="div">
+
<div style="float:right;width:500px;">
<img class="background" src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-pro2.jpg" width="100%" height="100%" />
+
  <img src="https://static.igem.org/mediawiki/2018/a/a2/T--WHU-China--wiki-Description_main2.png">
<img class="pD4" src="https://static.igem.org/mediawiki/2018/5/58/T--WHU-China--wiki-D4.png" />
+
  <img class="pD5" src="https://static.igem.org/mediawiki/2018/9/94/T--WHU-China--wiki-D5.png" />
+
<img class="pD6" src="https://static.igem.org/mediawiki/2018/a/a4/T--WHU-China--wiki-D6.png" />
+
<div class="div_w5">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  Finally, considering the characteristics of the conveyor, we have adopted a more advanced method of symbiotic biofilm formation, which is to compress the suspended symbiotic liquid into a biofilm, which can carry out the subsequent phosphorus accumulation more efficiently. However, the establishment of biofilms will encounter the disintegration problem caused by the low stability of the membrane on the traditional filtration method. We explore the more efficient membrane formation method and use synthetic biology to make the engineering bacteria Express tighter proteins that bind to algae to enhance biofilm stability!
+
  </p>
+
  </div>
+
+
 
  </div>
 
  </div>
<div class="div">
+
</div>
<img class="background" src="https://static.igem.org/mediawiki/2018/f/f0/T--WHU-China--wiki-pro.jpg" width="100%" height="100%" />
+
<img class="pD7" src="https://static.igem.org/mediawiki/2018/c/ce/T--WHU-China--wiki-D7.png" />
+
<img class="pD8" src="https://static.igem.org/mediawiki/2018/2/22/T--WHU-China--wiki-D8.png" />
+
<img class="pD9" src="https://static.igem.org/mediawiki/2018/4/45/T--WHU-China--wiki-D9.png" />
+
<img class="pD10" src="https://static.igem.org/mediawiki/2018/c/ca/T--WHU-China--wiki-D10.png" />
+
<img class="pD11" src="https://static.igem.org/mediawiki/2018/d/d4/T--WHU-China--wiki-D11.png" />
+
+
<div class="div_w6">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 110%;">
+
  We have tried a total of three methods, these simple pathways can theoretically greatly enhance the stability of the membrane.
+
  </p>
+
  </div>
+
+
<div class="div_w7">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 110%;">
+
  <b>Frist Lectin</b> Lectin is a protein derived from green algae. It can be combined with a large amount of negatively charged extracellular matrix EPS of algae because of its electrical characteristics. We express it by membrane display.
+
  </p>
+
  </div>
+
 
+
<div class="div_w8">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 110%;">
+
  <b>Second Cbd</b> Cbd can bind to the cell wall of algae
+
  </p>
+
  </div>
+
 
+
  <div class="div_w9">
+
  <p  style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 110%;">
+
  <b>Third FimH—lectin</b> The expression of lectin on the bacterial pili is based on the idea of Imperial College of Science and Technology for 17 years. The pili is spread throughout the body of E. coli. It is theoretically very effective to express lectin at the end of the pili to make it more fully integrated with algae.
+
  </p>
+
  </div>
+
+
</div>
+
<div class="div">
+
<img class="background" src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-pro2.jpg" width="100%" height="100%" />
+
<img class="pD12" src="https://static.igem.org/mediawiki/2018/0/0a/T--WHU-China--wiki-D12.png" />
+
<div class="div_w10">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  <b> 2. Phosphorus recovery system (circulation control path)</b>
+
  </p>
+
  </div>
+
<div class="div_w11">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  The conveyor is the technical core of the Ark, and this phosphorus recovery system is the core of the conveyor belt.!The specific capture and recovery of the whole set of phosphorus is the function of this system.
+
Our conveyor belts carry our bacteria in different environments. To achieve the specificity of their recovery, bacteria must express different proteins under different conditions.
+
These proteins can control the accumulation and release of phosphorus in engineered bacteria.
+
In short, the role of the circulation control pathway is to allow the bacteria to express two different proteins under different conditions and to cycle back and forth like day and night. This pathway is the essence of the biotransport, which can be subdivided into two parts, the functional part and control section
+
  
  </p>
+
<div class="c_row" style="clear:both;">
  </div>
+
<p style="font-size:22px;">The outside water can pass through the turbine, allowing CC to be absorbed by the bio-conveyor. When the part of loaded conveyor is rotated into the inner of the Ark, it can release what it has absorbed earlier. That enables our Ark to collect CC continuously from the environment.</p><br />
 +
</div>
  
 +
<div class="c_row" style="text-align:center;">
 +
<img src="https://static.igem.org/mediawiki/2018/c/c7/T--WHU-China--wiki-description_main3.png">
 +
<br />
 +
<br />
 +
</div>
 +
<div class="c_row">
 +
<p style="font-size:22px;">So, how does the bio-conveyor work—CC  collection? The secret lies in our biological part. Actually, this biofilm is formed by both engineered bacteria and algae.
 +
</p><br />
 +
</div>
 +
 +
<div class="c_row" style="text-align:center;">
 +
<img src="https://static.igem.org/mediawiki/2018/f/fa/T--WHU-China--wiki-description_main4.png">
 +
<br />
 +
<br />
 +
</div>
 +
 +
<div class="c_row">
 +
<p style="font-size:22px;">To achieve our goal, we construct this advanced <span style="font-weight:500;color:red;text-decoration:underline;">multiorganism</span> system—both bacteria and algae play a very important role in it.
 +
</p><br /><br /><br />
 +
<h4>1.Our bacteria:</h4>
 +
<p style="font-size:22px;">We choose E.coli  BL.21  as our chassis. Bacteria play a core role in the system since all the engineered process happens in  them. We transformed two plasmids into them: one is responsible for element collection and the other is responsible for biofilm formation.</p>
 +
<br /><br />
 +
</div>
 +
 +
<div class="c_row">
 +
<div style="width:500px;float:left;">
 +
  <h4>2.Algae perfectly match with bacteria:</h4>
 +
  <p style="font-size:22px;">Firstly, bacteria alone can’t survive and grow well in sewage environment, since there are many chemicals, organic agents and even antibiotics in the polluted water. However, the EPS(exopolysubstance) excreted by algae can give bacteria  protect and resistance to make them work well.</p>
 +
  <br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<p style="font-size:22px;">Secondly, since we want to make it work in lakes or ocean, it will be better if it can work automatically.  But toughly,  to collect the diffused element is an anti-entropy matter, and it needs energy!  In this situation, our algae can perfectly solve this problem by providing bacteria carbonhydrate through photosynthesis.</p>
 
  </div>
 
  </div>
   
+
  <div style="float:right;width:500px;">
<div class="div">
+
  <br /><br />
<img class="background" src="https://static.igem.org/mediawiki/2018/f/f0/T--WHU-China--wiki-pro.jpg" width="100%" height="100%" />
+
  <img src="https://static.igem.org/mediawiki/2018/8/8a/T--WHU-China--wiki-Description_main5.png">
+
 
  </div>
 
  </div>
<div class="div">
+
</div>
<img class="background" src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-pro2.jpg" width="100%" height="100%" />
+
<div class="c_row" style="clear:both;">
  <img class="pD13" src="https://static.igem.org/mediawiki/2018/d/de/T--WHU-China--wiki-D13.png" />
+
<br />
  <div class="div_w12">
+
<br />
  <p style="font-family: Arial, Helvetica, sans-serif;
+
<p style="font-size:22px;">In next session—design, we will introduce how our bacteria collect specific element and stabilize the symbiotic biofilm through two pathways.</p>
font-size: 120%;">
+
</div>
  <b> 2. Control section</b>
+
  </p>
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
The above process PPK and PPN/X expression need to be repeated alternately, because the effects of PPK and PPN/X are diametrically opposite, so the control part must ensure that only PPK is expressed in the water environment without expressing PPN/X, and vice versa. . How to control the expression of specific proteins in a specific environment is a key issue - chemical small molecules such as iptg or other means can specifically express bacteria in a specific environment, but our expression is "circular "This means that the expression of each round cannot affect the expression of the next round. The chemical must consider the accumulated problems. Maybe after several rounds, the system will collapse, such as the accumulation of iptg to a certain extent. The PPK could not be closed inside the Ark and the recycling system crashed.
+
In the end we chose - the lightest and most loop-friendly way to switch, we drew on the toggle switch and simplified and improved it in our system to design this path:
+
  </p>
+
  </div>
+
</div>
+
+
<div class="div">
+
<img class="background" src="https://static.igem.org/mediawiki/2018/f/f0/T--WHU-China--wiki-pro.jpg" width="100%" height="100%" />
+
<img class="pD14" src="https://static.igem.org/mediawiki/2018/6/61/T--WHU-China--wiki-D14.png" />
+
<img class="pD15" src="https://static.igem.org/mediawiki/2018/0/08/T--WHU-China--wiki-D15.png" />
+
<img class="pD16" src="https://static.igem.org/mediawiki/2018/c/c1/T--WHU-China--wiki-D16.png" />
+
<div class="div_w13">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  Ccas and ccar are light-sensitive and acceptor proteins that, when they receive a light signal (green light), activate the cpcg promoter and turn on downstream expression. If the red light signal is received, the activation of the cpcg promoter is removed and the downstream expression is turned off.
+
  </p>
+
  </div>
+
+
<div class="div_w14">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  The Ccasr system is a classic light control system. We use its system to combine with the non-gate to achieve specific control functions in our path.
+
  </p>
+
  </div>
+
+
</div>
+
<div class="div">
+
<img class="background" src="https://static.igem.org/mediawiki/2018/2/26/T--WHU-China--wiki-pro2.jpg" width="100%" height="100%" />
+
<img class="pD17" src="https://static.igem.org/mediawiki/2018/0/00/T--WHU-China--wiki-D17.png" />
+
<img class="pD18" src="https://static.igem.org/mediawiki/2018/e/e9/T--WHU-China--wiki-D18.png" />
+
  <div class="div_w15">
+
  <p style="font-family: Arial, Helvetica, sans-serif;
+
font-size: 120%;">
+
  Because the conveyor belt runs very slowly, the expressed protein and non-gate control signals will be degraded after they stop expressing, and the light promoter will not leave any traces. Therefore, in theory, this loop control channel can continue to work. See the modeling section.
+
  </p>
+
  </div>
+
+
</div>
+
+
<div class="div">
+
<img class="background" src="https://static.igem.org/mediawiki/2018/8/80/T--WHU-China--wiki-prob.jpg" width="100%" height="100%" />
+
</div>
+
 
+
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 13:52, 9 October 2018

Description

To solve this environmental problem that caused by CC, we invent this Ark! It can float on the surface of water and use solar energy to collect CC like a “marine cage”.

So you may wonder, how can we do that? The Ark has been carefully designed : The core device is bio-conveyor. There is a track which our biofilm adhere to and it can shuttle between environment and interior periodically. The track and biofilm constitute bio-conveyor.

The outside water can pass through the turbine, allowing CC to be absorbed by the bio-conveyor. When the part of loaded conveyor is rotated into the inner of the Ark, it can release what it has absorbed earlier. That enables our Ark to collect CC continuously from the environment.




So, how does the bio-conveyor work—CC collection? The secret lies in our biological part. Actually, this biofilm is formed by both engineered bacteria and algae.




To achieve our goal, we construct this advanced multiorganism system—both bacteria and algae play a very important role in it.




1.Our bacteria:

We choose E.coli BL.21 as our chassis. Bacteria play a core role in the system since all the engineered process happens in them. We transformed two plasmids into them: one is responsible for element collection and the other is responsible for biofilm formation.



2.Algae perfectly match with bacteria:

Firstly, bacteria alone can’t survive and grow well in sewage environment, since there are many chemicals, organic agents and even antibiotics in the polluted water. However, the EPS(exopolysubstance) excreted by algae can give bacteria protect and resistance to make them work well.








Secondly, since we want to make it work in lakes or ocean, it will be better if it can work automatically. But toughly, to collect the diffused element is an anti-entropy matter, and it needs energy! In this situation, our algae can perfectly solve this problem by providing bacteria carbonhydrate through photosynthesis.





In next session—design, we will introduce how our bacteria collect specific element and stabilize the symbiotic biofilm through two pathways.