SAKANAhuman (Talk | contribs) |
|||
Line 21: | Line 21: | ||
margin-left:10%; | margin-left:10%; | ||
margin-right:10%; | margin-right:10%; | ||
+ | color: #f0f8ff; | ||
} | } | ||
ul.index1 ul{ | ul.index1 ul{ | ||
Line 28: | Line 29: | ||
list-style:none; | list-style:none; | ||
} | } | ||
+ | .box27 { | ||
+ | margin-top: 0;margin-left: 0; | ||
+ | margin-right: 0;margin-bottom: 0;; | ||
+ | background: #25B6CA; | ||
+ | padding: 5px; | ||
+ | |||
+ | } | ||
+ | .box27 .box-title { | ||
+ | position: relative; | ||
+ | display: inline-block; | ||
+ | top: -27px; | ||
+ | left: -3px; | ||
+ | padding: 0 9px; | ||
+ | height: 25px; | ||
+ | line-height: 25px; | ||
+ | vertical-align: middle; | ||
+ | font-size: 17px; | ||
+ | background: #62c1ce; | ||
+ | color: #ffffff; | ||
+ | font-weight: bold; | ||
+ | border-radius: 5px 5px 0 0; | ||
+ | } | ||
+ | .box27 p { | ||
+ | margin: 0; | ||
+ | padding: 0; | ||
+ | } | ||
+ | |||
+ | |||
p.description{ | p.description{ | ||
text-align:center; | text-align:center; | ||
Line 90: | Line 119: | ||
<div id="BACKGROUND"> | <div id="BACKGROUND"> | ||
<div id="wrapper"><br><br><br> | <div id="wrapper"><br><br><br> | ||
− | < | + | |
− | + | ||
+ | |||
+ | <div class="box27"> | ||
+ | <span class="box-title"><font face="Segoe UI">Table of contents</font></span> | ||
<ul class="index1"> | <ul class="index1"> | ||
− | <li><a href="#Na+濃度が関わる様々な生命現象">1) Na+濃度が関わる様々な生命現象(RNAフォールディング、タンパク質の結合…と文献をつけながら挙げる。各々に細かくは触れない)</a></li> | + | <li><a href="#Na+濃度が関わる様々な生命現象">1)<font color="#fffafa"> Na+濃度が関わる様々な生命現象(RNAフォールディング、タンパク質の結合…と文献をつけながら挙げる。各々に細かくは触れない)</font></a></li> |
− | <li><a href="#Pines are being lost due to pine-wilt disease">2) 生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</a></li> | + | <li><a href="#Pines are being lost due to pine-wilt disease">2)<font color="#fffafa"> 生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</font></a></li> |
− | <li><a href="#The cause of pine-wilt disease is a tiny nematode">3) 酵母を用いた塩吸収システム(必要なエネルギーが小さいこと、エネルギー効率がいいこと、イオンの自由選択的除去ができること、フィルター交換がいらないこと、立地上の制限が小さいこと、など利点を挙げる)</a></li> | + | <li><a href="#The cause of pine-wilt disease is a tiny nematode">3)<font color="#fffafa"> 酵母を用いた塩吸収システム(必要なエネルギーが小さいこと、エネルギー効率がいいこと、イオンの自由選択的除去ができること、フィルター交換がいらないこと、立地上の制限が小さいこと、など利点を挙げる)</font></a></li> |
− | <li><a href="#It is difficult to prevent the spread of">4) 回収効率上昇のための凝集システム</a></li> | + | <li><a href="#It is difficult to prevent the spread of">4)<font color="#fffafa"> 回収効率上昇のための凝集システム</font></a></li> |
− | <li><a href="#RNAi is a powerful weapon to fight against the nematodes">5) モデリングを介した目的濃度まで下げるのに必要な酵母量の算出</a></li> | + | <li><a href="#RNAi is a powerful weapon to fight against the nematodes">5)<font color="#fffafa"> モデリングを介した目的濃度まで下げるのに必要な酵母量の算出</font></a></li> |
</ul> | </ul> | ||
+ | </div> | ||
Revision as of 15:45, 11 October 2018
Here is Description! (The content won't change, but the English might be revised.)
Ions play an important role in almost all of the biological reactions. Without ions, a living organism cannot maintain their vital activity and therefore, ion strength has a huge impact on them. Devices that synthetic biology develops also affected by such a restriction.
These Devices are ever-improving and many researchers are working very hard to devise a solution for every problem we confront in this world. Among this background, controlling ion concentration sometimes become an especially vital role. For example, when you have low salt concentration, you may solve by adding salt to culture solution. However, what if the salt concentration was too high? This will be a difficult problem.
If we could develop a new device that collects sodium under a high salt concentration environment, this could become a significant tool to support bio-sensing and bio-remediation. Additionally, this device may also be applied to things such as factory disposal and salt damage. It might become a new approach to solve that kind of environmental issues.
How far can we do with biological desalination system?This question has not yet discussed fully. Thus this year, our team addressed a problem.
To deal with this problem, we bioengineered Saccharomyces cerevisiae and increased Na+ uptake system in their plasma membrane and vacuolar. Then, by expressing a mechanism that adheres to Saccharomyces cerevisiae each other on the cell wall, Saccharomyces cerevisiae which has absorbed Na + in solution is aggregated and recovered as a paste. By developing this system, we believe that a simpler and easier to use biological desalination system can be realized.
While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.
-----------------------------------------------------------