Difference between revisions of "Team:Tongji-Software/Template:Example Math"

 
(54 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
<head>
 
<head>
  <script type="text/x-mathjax-config">
+
    <script type="text/x-mathjax-config">
        MathJax.Hub.Config({
+
      MathJax.Hub.Config({
          extensions: ["tex2jax.js"],
+
        extensions: ["tex2jax.js"],
          jax: ["input/TeX", "output/HTML-CSS"],
+
        jax: ["input/TeX", "output/HTML-CSS"],
          tex2jax: {
+
        tex2jax: {
            inlineMath: [ ['$','$'], ["\\(","\\)"] ],
+
          inlineMath: [ ['$','$'], ["\\(","\\)"] ],
            displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
+
          displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
            processEscapes: true
+
          processEscapes: true
          },
+
        },
          "HTML-CSS": { fonts: ["TeX"] }
+
        "HTML-CSS": { fonts: ["TeX"] }
        });
+
      });
      </script>
+
    </script>
  <script src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">  
+
    <script type="text/javascript" src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
<head/>
 
<head/>
</script>
 
  
 +
<style>
 +
.equation{
 +
font-size:0.1px;
 +
 +
}
 +
</style>
  
  
Line 23: Line 28:
  
 
<body>
 
<body>
 +
  <div class="nav_model">
 +
      <h1 id="blast">Get the power of blast</h1>
  
 +
      <p>Where:</p>
 +
                        <span class="equation">$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$
 +
                        $$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$
 +
                        $$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$</span>
 +
                        <p>&emsp;&emsp;The aim is to search for the best W that minimize the mean of e.</p>
  
<span>$$\[{e^{{\rm{ - }}\Delta {\rm{r}}{G^{' \circ }}/RT}}\]$$</span>
+
<span>\[{e^{-\Delta{r}{G^{'\circ}}/RT}}\]</span>
 
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span>
 
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span>
 +
 +
<span>\[{\sum\nolimits_{{r^'}} {{{\rm{e}}^{ - {\Delta _{{r^'}}}{G^{' \circ /RT}}}}} }\]</span>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 17:00, 13 October 2018