(52 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
<head/> | <head/> | ||
+ | <style> | ||
+ | .equation{ | ||
+ | font-size:0.1px; | ||
+ | } | ||
+ | </style> | ||
Line 27: | Line 32: | ||
<p>Where:</p> | <p>Where:</p> | ||
− | <span>$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$ | + | <span class="equation">$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$ |
$$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$ | $$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$ | ||
$$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$</span> | $$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$</span> | ||
<p>  The aim is to search for the best W that minimize the mean of e.</p> | <p>  The aim is to search for the best W that minimize the mean of e.</p> | ||
− | <span> | + | <span>\[{e^{-\Delta{r}{G^{'\circ}}/RT}}\]</span> |
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> | <span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> | ||
+ | |||
+ | <span>\[{\sum\nolimits_{{r^'}} {{{\rm{e}}^{ - {\Delta _{{r^'}}}{G^{' \circ /RT}}}}} }\]</span> | ||
</body> | </body> | ||
</html> | </html> |
Latest revision as of 17:00, 13 October 2018