Difference between revisions of "Team:Tongji-Software/Template:Example Math"

 
(52 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
<head/>
 
<head/>
  
 +
<style>
 +
.equation{
 +
font-size:0.1px;
  
 +
}
 +
</style>
  
  
Line 27: Line 32:
  
 
       <p>Where:</p>
 
       <p>Where:</p>
                         <span>$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$  
+
                         <span class="equation">$$X=[x_1,\ x_2,\ x_3,\ ...,\ x_n]^T$$  
 
                         $$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$
 
                         $$W=[w_1,\ w_2,\ w_3,\ ...,\ w_n]^T$$
 
                         $$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$</span>
 
                         $$\varepsilon=[\varepsilon_1,\ \varepsilon_2,\ \varepsilon_3,\ ...,\ \varepsilon_n]^T$$</span>
 
                         <p>&emsp;&emsp;The aim is to search for the best W that minimize the mean of e.</p>
 
                         <p>&emsp;&emsp;The aim is to search for the best W that minimize the mean of e.</p>
  
<span>$$\[{e^{{\rm{ - }}\Delta {\rm{r}}{G^{' \circ }}/RT}}\]$$</span>
+
<span>\[{e^{-\Delta{r}{G^{'\circ}}/RT}}\]</span>
 
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span>
 
<span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span>
 +
 +
<span>\[{\sum\nolimits_{{r^'}} {{{\rm{e}}^{ - {\Delta _{{r^'}}}{G^{' \circ /RT}}}}} }\]</span>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 17:00, 13 October 2018