|
|
(18 intermediate revisions by the same user not shown) |
Line 40: |
Line 40: |
| <span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> | | <span>$$\hat p=\sigma(\theta^T \cdot x_b)=\frac{1}{1+\mathbf{e}^{-{\theta^{T \cdot x_b}}}}$$</span> |
| | | |
− | <span>\[f{\rm{(r) = }}\frac{{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}{{{\rm{ 1 + }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}} + {\rm{ }}\sum {{r^'} \in {R_N}\backslash {{\left\{ r \right\}}^{{\rm{ }}{{\rm{e}}^{ - {\Delta _r}{G^{' \circ /RT}}}}}}} }}\]</span> | + | <span>\[{\sum\nolimits_{{r^'}} {{{\rm{e}}^{ - {\Delta _{{r^'}}}{G^{' \circ /RT}}}}} }\]</span> |
− | <span class="equation">\[f{(r)=}\frac{{e}}^{-{\Delta_r}{G^{'\circ/RT}}}{{{{1+}}{{{e}}^{-{\Delta _r}{G^{'\circ/RT}}}}+\sum{{r^'}\in{R_N}\backslash{{\left\{r\right\}}^{{{}}{{{e}}^{-{\Delta _r{G^{'\circ/RT}}}}}</span>
| + | |
− | <span>$$J(\theta)=-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\hat p^{(i)})+(1-y^{(i)})\log(1-\hat p^{(i)})\\
| + | |
− | =-\frac{1}{m}\displaystyle\sum_{i=1}^m y^{(i)}\log(\sigma(-X_b^{(i)}\theta))+(1-y^{(i)})\log(1-\sigma(-X_b^{(i)}\theta))\\
| + | |
− | | + | |
− | <span class="equation">\[f(r) = \frac{e^{-\Delta{r}{G^{'\circ}}/RT}}{{{1+}{e^{-\Delta{r}{G^{'\circ}}/RT}}+\sum r^'\in {R_N}\backslash{{\left\{r \right\}}^{{e^{-\Delta{r}{G^{'\circ}}/RT}}}} }}\]</span>
| + | |
− | <span class="middle">\[Max\left\{ {Ave(A),Ave(B),Ave(C),Ave(D)...} \right\} \]</span>
| + | |
− | | + | |
− | <span>\[{{\rm{R}}_{{\rm{j + 1}}}}(i) = \left\{ \begin{array}{l} - 1,\begin{array}{*{20}{c}}{}&{}&{}&{}&{}&{}&{}&{}&{}&{}&{}\end{array}{{\rm{P}}_{\rm{j}}}(i) = - 1\\T(i,{\rm{reactant,product),}}\begin{array}{*{20}{c}}{}&{}\end{array}{{\rm{P}}_{\rm{j}}}(i) \ne - 1\end{array} \right.\]</span>
| + | |
| </body> | | </body> |
| </html> | | </html> |