|
|
Line 179: |
Line 179: |
| <div id="NanocageProfile" class="collapse" data-parent="#EncapCard"> | | <div id="NanocageProfile" class="collapse" data-parent="#EncapCard"> |
| <div class="card-body"> | | <div class="card-body"> |
− | Blablabla | + | ... |
| + | (<a href="#Sutter"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>) |
| </div> | | </div> |
| </div> | | </div> |
Line 274: |
Line 275: |
| <li id="Zhu2017">Zhu, Guizhi, et al. "Efficient nanovaccine delivery in cancer immunotherapy." <i>ACS nano</i>, 11.3 (2017): 2387-2392.</li> | | <li id="Zhu2017">Zhu, Guizhi, et al. "Efficient nanovaccine delivery in cancer immunotherapy." <i>ACS nano</i>, 11.3 (2017): 2387-2392.</li> |
| | | |
− | <li id="Liu2014">Liu, Haipeng, et al. "Structure-based programming of lymph-node targeting in molecular vaccines." <i>Nature</i> 507.7493 (2014): 519.</li> | + | <li id="Liu2014">Liu, Haipeng, et al. "Structure-based programming of lymph-node targeting in molecular vaccines." <i>Nature</i>, 507.7493 (2014): 519.</li> |
| <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li> | | <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li> |
| <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li> | | <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li> |
| <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> | | <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> |
| + | |
| + | <li id="Sutter2008">Sutter, Markus, et al. "Structural basis of enzyme encapsulation into a bacterial nanocompartment." <i>Nature structural & molecular biology</i>, 15.9 (2008): 939.</li> |
| </ol> | | </ol> |
| </article> | | </article> |
Line 365: |
Line 368: |
| <h1 id="Biomarkers">Blood Biomarkers</h1> | | <h1 id="Biomarkers">Blood Biomarkers</h1> |
| ..... | | ..... |
− | <br> | + | <ul class="nav nav-tabs nav-fill flex-column flex-sm-row" id="myTabBiomarkers" role="tablist"> |
− | <p class="lead"><b>miRNAs</b> are instead short (18-24 nt) non-coding RNA molecules which act as post-transcriptional regulators of gene expression. Over the years, miRNAs have been proved to play a critical role in a variety of different diseases and in several aspects of cancer (<a href="#Larrea"><span style="color:blue">Larrea <i>et al.</i>, 2016</span></a>). Moreover miRNAs are remarkably stable in human plasma (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>), and recently several miRNAs circulating in the blood have been shown to be dysregulated (either over- or under-expressed) in patients with certain cancers, including melanoma, with respect to healthy subjects (<a href="#Mirzaei"><span style="color:blue">Mirzaei <i>et al.</i>, 2016</span></a>). For these reasons, miRNAs have been proposed as potential prognostic and diagnostic biomarkers for melanoma, which makes them suitable candidates for the follow-up part of our project as well.</p> | + | <li class="nav-item"> |
− | <hr style="height:2px;border:none;color:#333;background-color:#333;" />
| + | <a class="nav-link mb-sm-3 active" id="ctDNABiom-tab" data-toggle="tab" href="#ctDNABiom" role="tab" aria-controls="home" aria-selected="true">ctDNA</a> |
| + | </li> |
| + | <li class="nav-item"> |
| + | <a class="nav-link mb-sm-3" id="miRNABiom-tab" data-toggle="tab" href="#miRNABiom" role="tab" aria-controls="contact" aria-selected="false">miRNA</a> |
| + | </li> |
| + | </ul> |
| + | |
| + | <div class="tab-content" id="ctDNABiom"> |
| + | <div class="tab-pane fade show active" id="ctDNACas" role="tabpanel" aria-labelledby="home-tab"> |
| + | <p class="lead">ctDNA Cas assay |
| + | <div id="ctDNABiomCard"> |
| + | <div class="card" id="trial"> |
| + | <a data-toggle="collapse" href="#Biom1"> |
| + | <div class="card-header"> |
| + | <h3 class="card-link"> |
| + | Neoantigen mutated fragments detection for vaccine monitoring |
| + | </h3> |
| + | </div> |
| + | </a> |
| + | <div id="Biom1" class="collapse" data-parent="#ctDNABiomCard"> |
| + | <div class="card-body"> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | <div class="card" id="trial"> |
| + | <a data-toggle="collapse" href="#Biom2"> |
| + | <div class="card-header"> |
| + | <h3 class="card-link"> |
| + | Chromosomal rearrangements as a tool for detecting disease recurrence |
| + | </h3> |
| + | </div> |
| + | </a> |
| + | <div id="Biom2" class="collapse" data-parent="#ctDNABiomCard"> |
| + | <div class="card-body"> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | </div> |
| + | </p> |
| + | </div> |
| + | |
| + | <div class="tab-pane fade" id="miRNABiom" role="tabpanel" aria-labelledby="contact-tab"> |
| + | <p class="lead">miRNA Biom |
| + | <br> |
| + | <p class="lead"><b>miRNAs</b> are instead short (18-24 nt) non-coding RNA molecules which act as post-transcriptional regulators of gene expression. Over the years, miRNAs have been proved to play a critical role in a variety of different diseases and in several aspects of cancer (<a href="#Larrea"><span style="color:blue">Larrea <i>et al.</i>, 2016</span></a>). Moreover miRNAs are remarkably stable in human plasma (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>), and recently several miRNAs circulating in the blood have been shown to be dysregulated (either over- or under-expressed) in patients with certain cancers, including melanoma, with respect to healthy subjects (<a href="#Mirzaei"><span style="color:blue">Mirzaei <i>et al.</i>, 2016</span></a>). For these reasons, miRNAs have been proposed as potential prognostic and diagnostic biomarkers for melanoma, which makes them suitable candidates for the follow-up part of our project as well.</p> |
| + | </p> |
| + | </div> |
| + | </div> |
| + | </p> |
| + | |
| + | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
| | | |
| <br> | | <br> |
Line 373: |
Line 426: |
| <p class="lead"> | | <p class="lead"> |
| <div id="Cas12"> | | <div id="Cas12"> |
− | <!--div class="card"> | + | |
− | <div class="card-header">
| + | |
− | <h3 class="card-link">
| + | |
− | <a data-toggle="collapse" href="#GeneralInfo">
| + | |
− | General information
| + | |
− | </a>
| + | |
− | </h3>
| + | |
− | </div>
| + | |
− | <div id="GeneralInfo" class="collapse" data-parent="#Cas12">
| + | |
− | <div class="card-body">
| + | |
− | Blablabla
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>-->
| + | |
| <p class="lead">To answer the need for a fast and robust detection method we chose to work with the newly characterized Cas12a (Cpf1) protein. </p> | | <p class="lead">To answer the need for a fast and robust detection method we chose to work with the newly characterized Cas12a (Cpf1) protein. </p> |
| <p class="lead">CRISPR-Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated) system are originally inspired by an antiviral defense mechanism used by prokaryotes which essentially works by recognizing and cleaving the foreign DNA/RNA. It has in the recent years widely been used as a gene editing tool for its ability to find and cut a specific target sequence (the activator).</p> | | <p class="lead">CRISPR-Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated) system are originally inspired by an antiviral defense mechanism used by prokaryotes which essentially works by recognizing and cleaving the foreign DNA/RNA. It has in the recent years widely been used as a gene editing tool for its ability to find and cut a specific target sequence (the activator).</p> |
Line 404: |
Line 444: |
| <div id="crRNAdes" class="collapse" data-parent="#Cas12"> | | <div id="crRNAdes" class="collapse" data-parent="#Cas12"> |
| <div class="card-body"> | | <div class="card-body"> |
− | Blablabla | + | ...(<a href="#Zetsche2017"><span style="color:blue">Zetsche <i>et al.</i>, 2017</span></a>) |
| </div> | | </div> |
| </div> | | </div> |
Line 847: |
Line 887: |
| <h2><i><u>References</u></i></h2> | | <h2><i><u>References</u></i></h2> |
| <ol> | | <ol> |
| + | <li id="Zetsche2017">Zetsche, Bernd, et al. "Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array." <i>Nature biotechnology</i>, 35.1 (2017): 31. </li> |
| + | <li id="Olsson2015">Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. <i>EMBO Mol Med</i>, 7, 1034–1047 (2015).</li> |
| + | |
| <li id="Mitchell">Mitchell, Patrick S., et al. "Circulating microRNAs as stable blood-based markers for cancer detection." <i>Proceedings of the National Academy of Sciences</i>, 105.30 (2008): 10513-10518.</li> | | <li id="Mitchell">Mitchell, Patrick S., et al. "Circulating microRNAs as stable blood-based markers for cancer detection." <i>Proceedings of the National Academy of Sciences</i>, 105.30 (2008): 10513-10518.</li> |
| <li id="NebCas12a">"EnGen Lba Cas12a (Cpf1)" - New England BioLabs website. URL: https://international.neb.com/products/m0653-engen-lba-cas12a-cpf1#Product%20Information_Notes (Accessed 24/09/2018)</li> | | <li id="NebCas12a">"EnGen Lba Cas12a (Cpf1)" - New England BioLabs website. URL: https://international.neb.com/products/m0653-engen-lba-cas12a-cpf1#Product%20Information_Notes (Accessed 24/09/2018)</li> |