(38 intermediate revisions by 5 users not shown) | |||
Line 30: | Line 30: | ||
background-size: 100%; | background-size: 100%; | ||
background-position: center; | background-position: center; | ||
+ | |||
} | } | ||
Line 44: | Line 45: | ||
padding: 50px; | padding: 50px; | ||
min-height: 180vh; | min-height: 180vh; | ||
− | z-index: 10; } | + | z-index: 10; |
+ | margin-top:600px; | ||
+ | } | ||
.text-area { | .text-area { | ||
Line 140: | Line 143: | ||
display: block !important; | display: block !important; | ||
margin: 40px auto !important; | margin: 40px auto !important; | ||
+ | } | ||
+ | .top-picture{ | ||
+ | z-index:2; | ||
+ | width:100%; | ||
+ | position: absolute; | ||
} | } | ||
Line 148: | Line 156: | ||
margin: 20px auto !important; | margin: 20px auto !important; | ||
} | } | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</style> | </style> | ||
<body> | <body> | ||
+ | <img class="top-picture" src="https://static.igem.org/mediawiki/2018/3/36/T--Mingdao--phil39.png"> | ||
<div class="bg-container" style="max-height:none;"> | <div class="bg-container" style="max-height:none;"> | ||
− | |||
<div class="my-main-container"> | <div class="my-main-container"> | ||
<div class="main-content"> | <div class="main-content"> | ||
<div class="text-area"> | <div class="text-area"> | ||
− | <h1 id = "d-introduction">Modeling</h1> | + | <!-- <h1 id = "d-introduction">Modeling</h1> --> |
<br /> | <br /> | ||
− | <h2>Introduction</h2> | + | |
+ | <h2 id="d-introduction">Introduction</h2> | ||
<br /> | <br /> | ||
Line 173: | Line 179: | ||
<p> | <p> | ||
<p> | <p> | ||
− | What’s more, with the view to making sure our system works successfully, we need to make sure that GFP can be detected in our testing devices. Since the GFP in mosquitoes take some time to be synthesized, we can detect the green fluorescence only few hours after the mosquitoes | + | What’s more, with the view to making sure our system works successfully, we need to make sure that GFP can be detected in our testing devices. Since the GFP in mosquitoes take some time to be synthesized, we can detect the green fluorescence only few hours after the mosquitoes draw the infected blood. To prevent from the misleading of our devices and system, we should calculate the very beginning time that the green fluorescence can be detected in the testing devices. |
</p> | </p> | ||
<p> | <p> | ||
Line 191: | Line 197: | ||
<p> | <p> | ||
− | <p>Since our devices can only detect the GFP intensity, we can only utilize GFP intensity to calculate E.coli concentration. After obtaining E.coli concentration, we will utilize it to calculate the very beginning time that GFP can be detected in the testing devices. Finally, the two parameters will be demonstrated on our devices for the testing devices to take as reference. | + | <p>Since our devices can only detect the GFP intensity, we can only utilize GFP intensity to calculate E. coli concentration. After obtaining E. coli concentration, we will utilize it to calculate the very beginning time that GFP can be detected in the testing devices. Finally, the two parameters will be demonstrated on our devices for the testing devices to take as reference. |
<p> | <p> | ||
<p> | <p> | ||
Line 201: | Line 207: | ||
<br /> | <br /> | ||
− | <h2 id = "d-model1">Model 1: Calculating E.coli Concentration by GFP Intensity</h2> | + | <h2 id = "d-model1">Model 1: Calculating E. coli Concentration by GFP Intensity</h2> |
<br /> | <br /> | ||
Line 207: | Line 213: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>To find the mathematical relationship between GFP and E.coli concentration, we measure the GFP intensities with different MOI value every two hours. Then, perform a series of calculations and finally obtain the mathematical relationship between GFP intensity and E.coli concentration.</p> | + | <p>To find the mathematical relationship between GFP and E. coli concentration, we measure the GFP intensities with different MOI value every two hours. Then, perform a series of calculations and finally obtain the mathematical relationship between GFP intensity and E. coli concentration.</p> |
<p> | <p> | ||
<br /> | <br /> | ||
<h3>Obtaining the Mathematical Relationship</h3> | <h3>Obtaining the Mathematical Relationship</h3> | ||
<p> | <p> | ||
− | <p>Table 1. | + | <p>Table 1.1 shows the relative fluorescence units (RFU) of GFP with different MOI values of E. coli. First of all, we transformed the MOI to E. coli density.</p> |
− | + | <img class="center" src="https://static.igem.org/mediawiki/2018/d/d6/T--Mingdao--sam100-1.png"alt=" " style="width:35%" > | |
− | <img class="center" src="https://static.igem.org/mediawiki/2018/ | + | <br /><br /> |
− | + | <h3>Conversion of MOI to E. coli density</h3> | |
− | < | + | |
− | <br /> | + | |
− | <h3>Conversion of MOI to E.coli density</h3> | + | |
<p> | <p> | ||
<p> | <p> | ||
− | <p>The equation of E.coli density is shown below: | + | <p>The equation of E. coli density is shown below: |
<p> | <p> | ||
<img class="center" src="https://static.igem.org/mediawiki/2018/1/10/T--Mingdao--Modeling02.jpg"alt=" " style="width:70%" > | <img class="center" src="https://static.igem.org/mediawiki/2018/1/10/T--Mingdao--Modeling02.jpg"alt=" " style="width:70%" > | ||
<p> | <p> | ||
− | Since the MOI value refers to the ratio of E.coli cells to mosquito cells, we can use the density of mosquito cells to calculate the E.coli density. Plus, the mosquito cells are seeded at the density of 1. | + | Since the MOI value refers to the ratio of E. coli cells to mosquito cells, we can use the density of mosquito cells to calculate the E. coli density. Plus, the mosquito cells are seeded at the density of 1.8×10<sup>5</sup> cells/well, and the volume of each well is 100μL. |
<p> | <p> | ||
Thus, the equation become | Thus, the equation become | ||
Line 231: | Line 234: | ||
<img class="center" src="https://static.igem.org/mediawiki/2018/a/ac/T--Mingdao--Modeling03.jpg"alt=" " style="width:70%" > | <img class="center" src="https://static.igem.org/mediawiki/2018/a/ac/T--Mingdao--Modeling03.jpg"alt=" " style="width:70%" > | ||
<p> | <p> | ||
− | <pFinally, we turned the MOIs into E.coli density to form Table 1.1. In the following, we used | + | <pFinally, we turned the MOIs into E. coli density to form Table 1.1 (the right column marked as red). In the following, we used the density of E. coli to calculate the mathematical relationship between E. coli concentration and GFP intensity.</p> |
<br /> | <br /> | ||
<h3>Forming the mathematical expression</h3> | <h3>Forming the mathematical expression</h3> | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>The | + | <p>The cells transfected with DNA has basal levels of GFP before responding to the E. coli. Thus, the background intensity of GFP should be eliminated for the actual RFU to obtain the relationship between E. coli concentration and GFP intensity, which means [GFP] (i.e, RFU of GFP) should minus the [GFP<sub>0</sub>] of cells before the addition of E. coli (Table 1.2). |
With that in mind, we form the Table 1.2 | With that in mind, we form the Table 1.2 | ||
<p> | <p> | ||
− | <img class="center" src="https://static.igem.org/mediawiki/2018/ | + | <img class="center" src="https://static.igem.org/mediawiki/2018/d/d0/T--Mingdao--sam100-2.png"alt=" " style="width:50%"> |
<p> | <p> | ||
Now we can begin with our data analyzing. | Now we can begin with our data analyzing. | ||
Line 248: | Line 251: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <P>Figure 2.0 shows the graphic expression between the [E.coli] and GFP intensity, the Exponential Function is shown below:<p> | + | <P>Figure 2.0 shows the graphic expression between the [E. coli] and GFP intensity [GFP], the Exponential Function is shown below:<p> |
</p> | </p> | ||
<p> | <p> | ||
Line 255: | Line 258: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>Next, we will bring in that [ | + | <p>Next, we will bring in that [GFP<sub>0</sub>]=813 to the Exponential Function and obtain the final graphic expression and function.</p> |
<p> | <p> | ||
<img class="center" src="https://static.igem.org/mediawiki/2018/0/0a/T--Mingdao--Modeling08.jpg" alt=" " style="width:70%"> | <img class="center" src="https://static.igem.org/mediawiki/2018/0/0a/T--Mingdao--Modeling08.jpg" alt=" " style="width:70%"> | ||
Line 268: | Line 271: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>With the formula, we can calculate the [E.coli] based on GFP Intensity, and apply the formula to our prototype design. </p> | + | <p>With the formula, we can calculate the [E. coli] based on GFP Intensity, and apply the formula to our prototype design. </p> |
<p> | <p> | ||
Line 281: | Line 284: | ||
<br /> | <br /> | ||
− | <h2 id="d-model2">Model 2: The | + | <h2 id="d-model2">Model 2: The GAM1 Promoter in Response to Number of E. coli Cells Increase With Time</h2> |
<br /> | <br /> | ||
<h3>Method</h3> | <h3>Method</h3> | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>To know | + | <p>To know how GAM1 promoter could be induced by E. coli concentration, we measure the GFP intensity with different MOI values every two hours. Then, we differentiate the curves, as are illustrated in Figure 3.0 - 3.4, to find the time that the instant GFP expression level reaches the maximum, which means the time E. coli cells begin to activate GAM1 promoter. |
</p> | </p> | ||
<br /> | <br /> | ||
− | <h3>Relative fluorescence units of GFP intensity in different MOIs of E. coli</h3> | + | <h3>Relative fluorescence units (RFU) of GFP intensity in different MOIs of E. coli</h3> |
<p> | <p> | ||
<p> | <p> | ||
− | <p>The RFU of GFP intensities of | + | <p>The RFU of GFP intensities of GAM1 promoter activities induced by different E. coli concentrations were shown in Table 2. </p> |
<p> | <p> | ||
− | <img class="center" src="https:// | + | <img class="center" src="https://static.igem.org/mediawiki/2018/5/52/T--Mingdao--Modelingnewphoto.jpg" alt=" " style="width:100%"> |
<p> | <p> | ||
<p>The RFU curves in the function of time were illustrated by different MOIs of E. coli, as shown from Figure 3.0 to Figure 3.4 | <p>The RFU curves in the function of time were illustrated by different MOIs of E. coli, as shown from Figure 3.0 to Figure 3.4 | ||
Line 331: | Line 334: | ||
<p>To calculate the maximum of the derivative of the GFP intensity curve, we conducted the second derivative and found the maximum and responding time. The results were shown in Table 3.2</p> | <p>To calculate the maximum of the derivative of the GFP intensity curve, we conducted the second derivative and found the maximum and responding time. The results were shown in Table 3.2</p> | ||
<p> | <p> | ||
− | + | <img class="center" src="https://static.igem.org/mediawiki/2018/0/0b/T--Mingdao--Modeling010.jpg" alt=" " style="width:70%"> | |
− | <img class="center" src="https:// | + | <p><p> |
− | <p> | + | <p>The graphic expression of the relationship between time and E. coli density was shown in Table 3.3 and Figure 5.0</p> |
− | <p> | + | |
− | <p>The graphic expression of the relationship between time and E.coli density was shown in Table 3.3 and Figure 5.0</p> | + | |
<p> | <p> | ||
<p> | <p> | ||
Line 343: | Line 344: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>We also arrive at the equation between time and E.coli concentration</p> | + | <p>We also arrive at the equation between time and E. coli concentration</p> |
<p> | <p> | ||
<p> | <p> | ||
Line 351: | Line 352: | ||
<p> | <p> | ||
<p> | <p> | ||
− | <p>With the formula, we can use the [E.coli] to calculate the responding time. Then, the formula will also be applied to our calculator and prototype, too.</p> | + | <p>With the formula, we can use the [E. coli] to calculate the responding time. Then, the formula will also be applied to our calculator and prototype, too.</p> |
<p> | <p> | ||
<p> | <p> | ||
Line 366: | Line 367: | ||
<div class="col-sm-6"> | <div class="col-sm-6"> | ||
− | <h3 style="padding:0"> E.coli Concentration Calculator</h3> | + | <h3 style="padding:0"> E. coli Concentration Calculator</h3> |
<script> | <script> | ||
function round(value, decimals) { | function round(value, decimals) { | ||
Line 390: | Line 391: | ||
<span style="width:70%">Type in the value:</span><input id = "inputLOCS" type="text" style="width:30%"> | <span style="width:70%">Type in the value:</span><input id = "inputLOCS" type="text" style="width:30%"> | ||
− | <br><span style="font-size:16px"> The calculator can calculate E.coli density based on the GFP intensity. </span> | + | <br><span style="font-size:16px"> The calculator can calculate E. coli density based on the GFP intensity. </span> |
<br><button onclick = "calculateee()">Calculate!</button><br> | <br><button onclick = "calculateee()">Calculate!</button><br> | ||
<br> | <br> | ||
Line 414: | Line 415: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td>E.coli Concentration</td> | + | <td>E. coli Concentration</td> |
<td> <span id="XCrysDamPid"> </span> Number of Cells Per uL</td> | <td> <span id="XCrysDamPid"> </span> Number of Cells Per uL</td> | ||
Line 475: | Line 476: | ||
<span style="width:70%">Enter value:</span><input id = "inputLOCSTget" type="text" style="width:30%"> | <span style="width:70%">Enter value:</span><input id = "inputLOCSTget" type="text" style="width:30%"> | ||
− | <br><span style="font-size:16px"> The calculator can calculate responding time based on the E.coli concentration.</span> | + | <br><span style="font-size:16px"> The calculator can calculate responding time based on the E. coli concentration.</span> |
<br><button onclick = "calculateeeT()">Calculate!</button><br> | <br><button onclick = "calculateeeT()">Calculate!</button><br> | ||
<br> | <br> | ||
− | <span style="font-size:26px">Calculation | + | <span style="font-size:26px">Calculation Result </span> |
<table class="table table-hover fixed" style="font:16px"> | <table class="table table-hover fixed" style="font:16px"> | ||
Line 493: | Line 494: | ||
<tbody align="right"> | <tbody align="right"> | ||
<tr> | <tr> | ||
− | <td>E.coli Density</td> | + | <td>E. coli Density</td> |
<td> <span id="XInputLOCSTid"> </span> Number of Cells Per uL </td> | <td> <span id="XInputLOCSTid"> </span> Number of Cells Per uL </td> | ||
Line 539: | Line 540: | ||
<h2 id="d-conclusion">Conclusion</h2> | <h2 id="d-conclusion">Conclusion</h2> | ||
<br /> | <br /> | ||
− | <p>Our model not only | + | <p>Our model not only builds the mathematical system which could be applied to our devices, but also makes us better understand our project. Because our device can only detect the GFP intensity, our model is required for a well-established devices and system. In our model 1, we obtain the formula which allows us to calculate [E. coli] from GFP intensity. While in model 2, we obtain the formula which allows us to calculate how long the device should take to get the result of the testing in response to a known concentration of bacteria. To sum up, our model obtain the significant parameters for our prototype design and provides information of the device limitation.</p> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
Line 550: | Line 546: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
<div class="path-btns" style="left:0;"> | <div class="path-btns" style="left:0;"> | ||
<div class="path"> | <div class="path"> | ||
Line 557: | Line 554: | ||
</svg> | </svg> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
<div id="d-introduction-btn" class="path-dot"></div> | <div id="d-introduction-btn" class="path-dot"></div> | ||
<div class="pathWord path-word-sm"> | <div class="pathWord path-word-sm"> | ||
Line 565: | Line 559: | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
− | |||
<div class="path"> | <div class="path"> | ||
Line 574: | Line 566: | ||
</svg> | </svg> | ||
</div> | </div> | ||
− | |||
− | |||
<div id="d-model1-btn" class="path-dot" style="top: 100px"></div> | <div id="d-model1-btn" class="path-dot" style="top: 100px"></div> | ||
<div class="pathWord path-word-sm"> | <div class="pathWord path-word-sm"> | ||
Line 589: | Line 579: | ||
</svg> | </svg> | ||
</div> | </div> | ||
− | |||
− | |||
<div id="d-model2-btn" class="path-dot" style="top: 200px"></div> | <div id="d-model2-btn" class="path-dot" style="top: 200px"></div> | ||
<div class="pathWord path-word-sm"> | <div class="pathWord path-word-sm"> | ||
Line 604: | Line 592: | ||
</svg> | </svg> | ||
</div> | </div> | ||
− | |||
− | |||
<div id="d-conclusion-btn" class="path-dot" style="top: 300px"></div> | <div id="d-conclusion-btn" class="path-dot" style="top: 300px"></div> | ||
<div class="pathWord path-word-sm"> | <div class="pathWord path-word-sm"> | ||
Line 611: | Line 597: | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
</div> | </div> | ||
− | |||
<div class="top"> | <div class="top"> | ||
− | <img class="center" src="https://static.igem.org/mediawiki/ | + | <img class="center" src="https://static.igem.org/mediawiki/2018/5/58/T--Mingdao--go_to_top.jpg" alt=""> |
</div> | </div> | ||
</body> | </body> | ||
+ | |||
<script type="text/javascript"> | <script type="text/javascript"> | ||
$("#d-introduction-btn").click(function() { | $("#d-introduction-btn").click(function() { | ||
Line 652: | Line 637: | ||
d_introduction_pos = $("#d-introduction").offset().top -100 | d_introduction_pos = $("#d-introduction").offset().top -100 | ||
− | + | d_model1_pos = $("#d-model1").offset().top -100 | |
− | + | d_model2_pos= $("#d-model2").offset().top -100 | |
d_conclusion_pos = $("#d-conclusion").offset().top -100 | d_conclusion_pos = $("#d-conclusion").offset().top -100 | ||
Latest revision as of 01:56, 15 October 2018
Introduction
In our project, we want to calculate the bacteria concentration in the testing devices.
However, our devices can only detect GFP intensity, so we can only utilize GFP intensity to calculate bacteria concentration.
What’s more, with the view to making sure our system works successfully, we need to make sure that GFP can be detected in our testing devices. Since the GFP in mosquitoes take some time to be synthesized, we can detect the green fluorescence only few hours after the mosquitoes draw the infected blood. To prevent from the misleading of our devices and system, we should calculate the very beginning time that the green fluorescence can be detected in the testing devices.
Guiding Questions
1. How many bacteria can be tested in our model ? (Model 1)
2. How long do our devices take to send out signal ? (Model 2)
Focus on Our Model
Since our devices can only detect the GFP intensity, we can only utilize GFP intensity to calculate E. coli concentration. After obtaining E. coli concentration, we will utilize it to calculate the very beginning time that GFP can be detected in the testing devices. Finally, the two parameters will be demonstrated on our devices for the testing devices to take as reference.
Model 1: Calculating E. coli Concentration by GFP Intensity
Method
To find the mathematical relationship between GFP and E. coli concentration, we measure the GFP intensities with different MOI value every two hours. Then, perform a series of calculations and finally obtain the mathematical relationship between GFP intensity and E. coli concentration.
Obtaining the Mathematical Relationship
Table 1.1 shows the relative fluorescence units (RFU) of GFP with different MOI values of E. coli. First of all, we transformed the MOI to E. coli density.
Conversion of MOI to E. coli density
The equation of E. coli density is shown below:
Since the MOI value refers to the ratio of E. coli cells to mosquito cells, we can use the density of mosquito cells to calculate the E. coli density. Plus, the mosquito cells are seeded at the density of 1.8×105 cells/well, and the volume of each well is 100μL.
Thus, the equation become
The cells transfected with DNA has basal levels of GFP before responding to the E. coli. Thus, the background intensity of GFP should be eliminated for the actual RFU to obtain the relationship between E. coli concentration and GFP intensity, which means [GFP] (i.e, RFU of GFP) should minus the [GFP0] of cells before the addition of E. coli (Table 1.2).
With that in mind, we form the Table 1.2
Now we can begin with our data analyzing.
Figure 2.0 shows the graphic expression between the [E. coli] and GFP intensity [GFP], the Exponential Function is shown below:
Next, we will bring in that [GFP0]=813 to the Exponential Function and obtain the final graphic expression and function.
Combining the constants, we arrive at
With the formula, we can calculate the [E. coli] based on GFP Intensity, and apply the formula to our prototype design.
To know how GAM1 promoter could be induced by E. coli concentration, we measure the GFP intensity with different MOI values every two hours. Then, we differentiate the curves, as are illustrated in Figure 3.0 - 3.4, to find the time that the instant GFP expression level reaches the maximum, which means the time E. coli cells begin to activate GAM1 promoter.
The RFU of GFP intensities of GAM1 promoter activities induced by different E. coli concentrations were shown in Table 2.
The RFU curves in the function of time were illustrated by different MOIs of E. coli, as shown from Figure 3.0 to Figure 3.4
Also, the mathematical expressions of these cubic equations were shown as Table 3.0 and the graphic expressions were shown as Figure 4.0
We conducted the derivative of the mathematical formula in Table 3.0 and form Table 3.1
To calculate the maximum of the derivative of the GFP intensity curve, we conducted the second derivative and found the maximum and responding time. The results were shown in Table 3.2
The graphic expression of the relationship between time and E. coli density was shown in Table 3.3 and Figure 5.0
We also arrive at the equation between time and E. coli concentration
With the formula, we can use the [E. coli] to calculate the responding time. Then, the formula will also be applied to our calculator and prototype, too.
Our model not only builds the mathematical system which could be applied to our devices, but also makes us better understand our project. Because our device can only detect the GFP intensity, our model is required for a well-established devices and system. In our model 1, we obtain the formula which allows us to calculate [E. coli] from GFP intensity. While in model 2, we obtain the formula which allows us to calculate how long the device should take to get the result of the testing in response to a known concentration of bacteria. To sum up, our model obtain the significant parameters for our prototype design and provides information of the device limitation.
Forming the mathematical expression
Data Analyzing
Conclusion
Application
Model 2: The GAM1 Promoter in Response to Number of E. coli Cells Increase With Time
Method
Relative fluorescence units (RFU) of GFP intensity in different MOIs of E. coli
Derivative of the GFP Intensity Curve
The Responding Time to The Maximum of The Formula
Application
CALCULATOR
E. coli Concentration Calculator
Type in the value:
The calculator can calculate E. coli density based on the GFP intensity.
Calculation Result
Variable
Value
Source
GFP Intensity
RFU
E. coli Concentration
Number of Cells Per uL
Model 1
Responding Time Calculator
Enter value:
The calculator can calculate responding time based on the E. coli concentration.
Calculation Result
Variable
Value
Source
E. coli Density
Number of Cells Per uL
Responding Time
Hr
Model 2
Conclusion
Introduction
Model 1
Model 2
Conclusion