Difference between revisions of "Team:NEU China A/Model"

Line 1: Line 1:
 
{{NEU_China_A}}
 
{{NEU_China_A}}
 
<html>
 
<html>
 +
  
 
<script type="text/javascript" src="https://2018.igem.org/Template:NEU_China_A/JS-jquery?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Template:NEU_China_A/JS-jquery?action=raw&ctype=text/javascript"></script>
Line 266: Line 267:
 
                     src="https://static.igem.org/mediawiki/2018/thumb/7/77/T--NEU_China_A--model_figure2.png/800px-T--NEU_China_A--model_figure2.png"/>
 
                     src="https://static.igem.org/mediawiki/2018/thumb/7/77/T--NEU_China_A--model_figure2.png/800px-T--NEU_China_A--model_figure2.png"/>
 
                 <h6 style="font-size:2em">Figure 2. Simple circuit of the amplifier</h6>
 
                 <h6 style="font-size:2em">Figure 2. Simple circuit of the amplifier</h6>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     The concentration of the Binder-Activator expressed by the input circuit is
 
                     The concentration of the Binder-Activator expressed by the input circuit is
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 338: Line 339:
 
                     <p>......(1)</p>
 
                     <p>......(1)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     There is only one synthetic pathway of y
 
                     There is only one synthetic pathway of y
 
                     , that is,
 
                     , that is,
Line 372: Line 373:
 
                     expression solving
 
                     expression solving
 
                 </h6>
 
                 </h6>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     The gene (equivalent to the binding sequence of binder) is abbreviated as G, various transcriptional activators are abbreviated as S, and various transcriptional repressors (e.g. Binder) are abbreviated as I. The binding of
 
                     The gene (equivalent to the binding sequence of binder) is abbreviated as G, various transcriptional activators are abbreviated as S, and various transcriptional repressors (e.g. Binder) are abbreviated as I. The binding of
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 391: Line 392:
 
                     <p>......(3)</p>
 
                     <p>......(3)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     k1 and k2 are the reaction rate constants of the forward reaction and the reverse reaction, respectively.
 
                     k1 and k2 are the reaction rate constants of the forward reaction and the reverse reaction, respectively.
 
                     Refer to the Michaelis-Menten equation, we do the following analysis: when the reaction reaches equilibrium, the concentration of SG does not change, that is, the rate of SG generation and decomposition is equal, then we can get the following equation:
 
                     Refer to the Michaelis-Menten equation, we do the following analysis: when the reaction reaches equilibrium, the concentration of SG does not change, that is, the rate of SG generation and decomposition is equal, then we can get the following equation:
Line 407: Line 408:
 
                     <p>......(6)</p>
 
                     <p>......(6)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more genes that bind to a transcriptional activator, the more the rate of expression of the gene increases. The expression of conversion to mathematics is:
 
                     In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more genes that bind to a transcriptional activator, the more the rate of expression of the gene increases. The expression of conversion to mathematics is:
 
                     In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more transcriptional activators that bind to the gene, the more the rate of expression of the gene increases. The mathematical expression is:
 
                     In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more transcriptional activators that bind to the gene, the more the rate of expression of the gene increases. The mathematical expression is:
Line 416: Line 417:
 
                     <p>......(7)</p>
 
                     <p>......(7)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     Suppose that when the substrate concentration is large enough,
 
                     Suppose that when the substrate concentration is large enough,
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 440: Line 441:
 
                     <p>......(8)</p>
 
                     <p>......(8)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     Bring the formula (6), (8) into equation (7) to get the analytical expression of
 
                     Bring the formula (6), (8) into equation (7) to get the analytical expression of
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 457: Line 458:
 
                     <p>......(9)</p>
 
                     <p>......(9)</p>
 
                 </div>
 
                 </div>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     Although the body's immune system can make timely adjustments to the inflammatory response,
 
                     Although the body's immune system can make timely adjustments to the inflammatory response,
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 495: Line 496:
 
                     expression analysis
 
                     expression analysis
 
                 </h6>
 
                 </h6>
                 <p>
+
                 <p class="gray-text" style="font-size:1.5em">
 
                     Since
 
                     Since
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
 
                     <math xmlns="http://www.w3.org/1998/Math/MathML">
Line 534: Line 535:
 
                     . Similar to the analysis we used to solve the expression of , we can get:
 
                     . Similar to the analysis we used to solve the expression of , we can get:
 
                 </p>
 
                 </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/c/c0/T--NEU_China_A--model_formula10.png">
 +
                    <p>......(10)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/c/ca/T--NEU_China_A--model_formula11.png">
 +
                    <p>......(11)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    In the reaction,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    represents the concentration of S, and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    represents the concentration of I. The increase of the transcription rate of the gene depends on the concentration of SG, that is, the amount of the transcriptional activator that binds to the gene, and the gene that binds to
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    can no longer bind to
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    , resulting in inhibition of transcription. So,
 +
                    <img src="https://static.igem.org/mediawiki/2018/b/bf/T--NEU_China_A--model_%26%E3%80%90SG%E3%80%91.png">
 +
                </p>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Analogy to the analysis we used to solve the expression of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>1</mn></msub>
 +
                            <mo>(</mo>
 +
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    , we list the following relationships:
 +
                    When it reaches equilibrium:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/3/3c/T--NEU_China_A--model_formula12.png">
 +
                    <p>......(12)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/f/fe/T--NEU_China_A--model_formula13.png">
 +
                    <p>......(13)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    From this we can get the following equation:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/d/de/T--NEU_China_A--model_formula14.png">
 +
                    <p>......(14)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/5/50/T--NEU_China_A--model_formula15.png">
 +
                    <p>......(15)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Sort out the above two formulas to get:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/8/87/T--NEU_China_A--model_formula16.png">
 +
                    <p>......(16)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    The same way we get:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/1/1d/T--NEU_China_A--model_formula17.png">
 +
                    <p>......(17)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    When [S] is large enough,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <mtext>P</mtext>
 +
                            <mo>(</mo>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                            <mtext>,</mtext>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    will take the maximum value and set it to .
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>P</mi><mn>2max</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    [S] will also be much larger than [G] and another in the denominator, so there are:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/d/dd/T--NEU_China_A--model_formula18.png">
 +
                    <p>......(18)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Bringing Equations (16), (18) into Equation (17) yields:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/3/34/T--NEU_China_A--model_formula19.png">
 +
                    <p>......(19)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    So, we get the expression of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <mtext>P</mtext>
 +
                            <mo>(</mo>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                            <mtext>,</mtext>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                            <mo>)</mo>
 +
                        </mrow>
 +
                    </math>
 +
                    .
 +
                    Because the role of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    in the system is to set a threshold for the amplification of
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    , and is set to a constitutive expression,
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    can be regarded as a fixed value of the regulation, and
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>3</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    becomes another variable constant.
 +
                </p>
 +
                <h6>
 +
                    III. Calculation of :
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                </h6>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    From the analysis of Equation (1) and the above two steps, the relationship between
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>2</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    and time after adding the amplifier can be obtained:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/6/6c/T--NEU_China_A--model_formula20.png">
 +
                    <p>......(20)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    The relationship between GFP fluorescence and time:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/0/0f/T--NEU_China_A--model_formula21.png">
 +
                    <p>......(21)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    When the amplifier is not used, y is directly synthesized by the inflammatory signal (
 +
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
 +
                        <mrow>
 +
                            <msub><mi>x</mi><mn>1</mn></msub>
 +
                        </mrow>
 +
                    </math>
 +
                    ), from which we can get:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/4/40/T--NEU_China_A--model_formula22.png">
 +
                    <p>......(22)</p>
 +
                </div>
 +
                <h5 class="black-text">2. Available when the bacterial resources are restricted</h5>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    The resources in bacteria are actually limited. In addition to using resources to synthesize the GFP, bacteria also need resources to maintain their normal life activities. At this time, there is competition between the amplifier and the bacteria's own life activities. The eventual result is that after a limited amount of resources are exhausted, the bacteria die and the amplifier stops working. Therefore, the following bacterial resource attenuation model is established.
 +
                    Assuming that the total amount of resources in the bacteria is q, then when the resource decays, the following formula holds:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/0/08/T--NEU_China_A--model_formula23.png">
 +
                    <p>......(23)</p>
 +
                </div>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/4/43/T--NEU_China_A--model_formula24.png">
 +
                    <p>......(24)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Among the above relationship, K is the total amount of initial resources before decay, and
 +
                    <img src="https://static.igem.org/mediawiki/2018/6/60/T--NEU_China_A--model_formula_special1.png">
 +
                    is the time constant of the decay process, we can get:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/5/57/T--NEU_China_A--model_formula25.png">
 +
                    <p>......(25)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Solution:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/5/51/T--NEU_China_A--model_formula26.png">
 +
                    <p>......(26)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    Then, when there is no amplifier, the GFP model is corrected to:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img src="https://static.igem.org/mediawiki/2018/4/47/T--NEU_China_A--model_formula27.png">
 +
                    <p>......(27)</p>
 +
                </div>
 +
                <p class="gray-text" style="font-size:1.5em">
 +
                    When there is an amplifier, the GFP model is corrected to:
 +
                </p>
 +
                <div style="display: flex; justify-content: center ;align-items: center">
 +
                    <img style="width: 70%" src="https://static.igem.org/mediawiki/2018/f/fc/T--NEU_China_A--model_formula28.png">
 +
                    <p>......(28)</p>
 +
                </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
         <div class="card white" id="">
+
         <div class="card white" id="Model solving">
 
             <div class="card-content">
 
             <div class="card-content">
                 <span class="card-title black-text" style="font-size:2.5em">Symbol Description</span>
+
                 <span class="card-title black-text" style="font-size:2.5em">Model solving</span>
 
                 <img class="image"
 
                 <img class="image"
 
                     src="https://static.igem.org/mediawiki/2018/9/9c/T--NEU_China_A--model_table1.png"/>
 
                     src="https://static.igem.org/mediawiki/2018/9/9c/T--NEU_China_A--model_table1.png"/>
Line 557: Line 795:
 
     });
 
     });
 
</script>
 
</script>
 
  
 
</html>
 
</html>

Revision as of 17:19, 15 October 2018

Introduction

In the affected area of ​​patients with inflammatory bowel disease, the concentration of nitric oxide is significantly increased, so we chose it as the input signal of our anti-inflammatory device. However, the nitric oxide is very unstable, so we have introduced an amplifier which can converts unstable gas signals into stable intracellular signals for sustained high-level output. The amplifier is based on a positive feedback loop. Transcription activator B-A can self-drive in a manner independent of the input signal for a period of time after the signal is input, and the metabolic flow in this cycle can be transferred to the output circuit (Figure 1).

Figure 1. Schematic Design of the Synthetic amplifier

After the signal is input, the transcriptional activator B-A is generated, which includes a DNA binding domain and a transcriptional activation domain. On the one hand, B-A can activate the expression of the reporter gene, and on the other hand can activate the expression of B-A itself. The constitutively expressed Binder will compete with B-A to suppress the leakage of the device.

In addition, when using an amplifier based on a positive feedback loop, we need to strictly limit its activation until the input signal is strong enough, which is beneficial to suppress leakage of the device. To this end, we introduce the concept of thresholds, which is to achieve competition between B-A and B by constitutively expressing Binder with a certain intensity (Figure 1). In this way, the amplifier can only be effectively activated when the input signal is strong enough. We established a mathematical model to predict the performance of the amplifier under different restrictions.

Assumption

(1) The sequence that B-A and B bind is the same. So, it can be considered that both are combined with the same substrate.

(2) B-A and B have the same promotion or inhibition effect on the amplifier and output circuit.

Symbol Description
Table 1. The name and symbol of variable
Fluorescence of GFP with Constant Inflammatory Signal
1.Available when the bacterial resources are extremely rich

Firstly, the amplifier we described in Figure 1 can be simplified to the Figure 2.

Figure 2. Simple circuit of the amplifier

The concentration of the Binder-Activator expressed by the input circuit is P2 ( x1 ) when the inflammatory signal is at a concentration of x1 per unit time. The amount of Binder-Activator or GFP expressed by the amplifier or effector is P ( x2 , x3 ) for the Binder-Activator and Binder at a concentration of x2 and x3 , respectively. When the amplifier is used, it can be seen from the Figure 2 that Binder-Activator ( x2 ) has two synthetic pathways, one is that the inflammatory signal ( x1 ) promotes the synthesis of the input circuit, and the other is that x2 facilitates the synthesis of the amplifier by x3 . So, we can get this equation:

......(1)

There is only one synthetic pathway of y , that is, x2 and x3 work together with the output circuit to release y, so it can be obtained by assumption 2:

......(2)

Ⅰ. P1 ( x1 ) expression solving

The gene (equivalent to the binding sequence of binder) is abbreviated as G, various transcriptional activators are abbreviated as S, and various transcriptional repressors (e.g. Binder) are abbreviated as I. The binding of x1 to the transcription factor (it means the NorR will be activated to bind the promoter PnorV) of input circuit is a reversible reaction, so the binding reaction of x1 to the input circuit can be expressed as:

......(3)

k1 and k2 are the reaction rate constants of the forward reaction and the reverse reaction, respectively. Refer to the Michaelis-Menten equation, we do the following analysis: when the reaction reaches equilibrium, the concentration of SG does not change, that is, the rate of SG generation and decomposition is equal, then we can get the following equation:

......(4)

......(5)

......(6)

In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more genes that bind to a transcriptional activator, the more the rate of expression of the gene increases. The expression of conversion to mathematics is: In fact, the increased rate of transcription of a regulated gene depends on the proportion of genes that bind to a transcriptional activator, and the more transcriptional activators that bind to the gene, the more the rate of expression of the gene increases. The mathematical expression is:

......(7)

Suppose that when the substrate concentration is large enough, P1 ( x1 ) will take the maximum value, set to P1max , and [S] will also be much larger than [G], so we can get this:

......(8)

Bring the formula (6), (8) into equation (7) to get the analytical expression of P1 ( x1 ) :

......(9)

Although the body's immune system can make timely adjustments to the inflammatory response, x1 is considered to be a fixed value in a sufficiently short period of time, and P1 ( x1 ) can also be considered as a constant that varies with x1 , abbreviated as A. The calculations that follow are handled this way.

Ⅱ. P ( x2 , x3 ) expression analysis

Since x2 , x3 binds to the same site in the gene, the gene is activated when x2 binds it while being inhibited when x3 binds it. This can be regarded as the competition between x2 and x3 . Similar to the analysis we used to solve the expression of , we can get:

......(10)

......(11)

In the reaction, x2 represents the concentration of S, and x3 represents the concentration of I. The increase of the transcription rate of the gene depends on the concentration of SG, that is, the amount of the transcriptional activator that binds to the gene, and the gene that binds to x3 can no longer bind to x2 , resulting in inhibition of transcription. So,

Analogy to the analysis we used to solve the expression of P1 ( x1 ) , we list the following relationships: When it reaches equilibrium:

......(12)

......(13)

From this we can get the following equation:

......(14)

......(15)

Sort out the above two formulas to get:

......(16)

The same way we get:

......(17)

When [S] is large enough, P ( x2 , x3 ) will take the maximum value and set it to . P2max [S] will also be much larger than [G] and another in the denominator, so there are:

......(18)

Bringing Equations (16), (18) into Equation (17) yields:

......(19)

So, we get the expression of P ( x2 , x3 ) . Because the role of x3 in the system is to set a threshold for the amplification of x2 , and is set to a constitutive expression, x3 can be regarded as a fixed value of the regulation, and x3 becomes another variable constant.

III. Calculation of : x2

From the analysis of Equation (1) and the above two steps, the relationship between x2 and time after adding the amplifier can be obtained:

......(20)

The relationship between GFP fluorescence and time:

......(21)

When the amplifier is not used, y is directly synthesized by the inflammatory signal ( x1 ), from which we can get:

......(22)

2. Available when the bacterial resources are restricted

The resources in bacteria are actually limited. In addition to using resources to synthesize the GFP, bacteria also need resources to maintain their normal life activities. At this time, there is competition between the amplifier and the bacteria's own life activities. The eventual result is that after a limited amount of resources are exhausted, the bacteria die and the amplifier stops working. Therefore, the following bacterial resource attenuation model is established. Assuming that the total amount of resources in the bacteria is q, then when the resource decays, the following formula holds:

......(23)

......(24)

Among the above relationship, K is the total amount of initial resources before decay, and is the time constant of the decay process, we can get:

......(25)

Solution:

......(26)

Then, when there is no amplifier, the GFP model is corrected to:

......(27)

When there is an amplifier, the GFP model is corrected to:

......(28)

Model solving
Table 1. The name and symbol of variable