Difference between revisions of "Team:Kyoto/Project"

Line 58: Line 58:
 
     <span class="box-title"><font face="Segoe UI">Table of contents</font></span>
 
     <span class="box-title"><font face="Segoe UI">Table of contents</font></span>
 
           <ul class="index1">
 
           <ul class="index1">
             <li><a href="#Introduction"><b>●Introduction</b></a></li>
+
             <li><a href="#Motivation"><b>●Motivation</b></a></li>
  
 
             <li><a href="#Na+濃度が関わる様々な生命現象">1)<b> Na+濃度が関わる様々な生命現象(RNAフォールディング、タンパク質の結合…と文献をつけながら挙げる。各々に細かくは触れない)</b></a></li>
 
             <li><a href="#Na+濃度が関わる様々な生命現象">1)<b> Na+濃度が関わる様々な生命現象(RNAフォールディング、タンパク質の結合…と文献をつけながら挙げる。各々に細かくは触れない)</b></a></li>
Line 71: Line 71:
 
           </ul>
 
           </ul>
 
           </div>
 
           </div>
   <h5 id="Introduction"> Introduction </h5>
+
   <h5 id="Motivation"> Motivation </h5>
 
<p>Na+濃度はRNAフォールディング(文献有)、DNAの2重鎖構造(文献つける必要)、タンパク質間の相互作用に大きな影響を与える。そしてiGEMerたちは海水中から重金属を回収したり、タンパク質間の作用を利用して何かを検出するデバイスを作成したりする。つまり、iGEMチームが開発するツールは、過酷な状況に置かれたり、Na+濃度を減らす必要があったりする。それらの効果を最大限に発揮するためにその生物の耐塩性を向上させたりNa+濃度を調節したりする必要がある。今年、私たちiGEM Kyotoは過酷な状況でも生育できたり、Na+を回収したりする酵母の作成に挑みました。(H&Pの意見を取り入れ)バイオセーフティーのために酵母を凝集させることも目指しました。</p>
 
<p>Na+濃度はRNAフォールディング(文献有)、DNAの2重鎖構造(文献つける必要)、タンパク質間の相互作用に大きな影響を与える。そしてiGEMerたちは海水中から重金属を回収したり、タンパク質間の作用を利用して何かを検出するデバイスを作成したりする。つまり、iGEMチームが開発するツールは、過酷な状況に置かれたり、Na+濃度を減らす必要があったりする。それらの効果を最大限に発揮するためにその生物の耐塩性を向上させたりNa+濃度を調節したりする必要がある。今年、私たちiGEM Kyotoは過酷な状況でも生育できたり、Na+を回収したりする酵母の作成に挑みました。(H&Pの意見を取り入れ)バイオセーフティーのために酵母を凝集させることも目指しました。</p>
  
 
   <h5 id="Na+濃度が関わる様々な生命現象"> Na+濃度が関わる様々な生命現象</h5>
 
   <h5 id="Na+濃度が関わる様々な生命現象"> Na+濃度が関わる様々な生命現象</h5>
 
イントロダクションで述べたようにNa+濃度はmacromoleculeの反応性にとても重要な影響を及ぼす。濃度が適切でないとRNAフォールディングはうまくなされないし、濃度が高いと分子同士の結合が阻害される一方で、低いと非特異的な結合が多くなる。例えば、私たちが数種類の塩濃度条件下でGPFのpull down assayを行ったところ、そのような結果が得られた(More detail is Here (GFPパーツE1010へのリンク))
 
イントロダクションで述べたようにNa+濃度はmacromoleculeの反応性にとても重要な影響を及ぼす。濃度が適切でないとRNAフォールディングはうまくなされないし、濃度が高いと分子同士の結合が阻害される一方で、低いと非特異的な結合が多くなる。例えば、私たちが数種類の塩濃度条件下でGPFのpull down assayを行ったところ、そのような結果が得られた(More detail is Here (GFPパーツE1010へのリンク))
 +
 +
<center>RNAフォールディングとか、タンパク質間の作用のイラスト</center>
  
 
   <h5 id="生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</"> <b>生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</h5>
 
   <h5 id="生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</"> <b>生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)</h5>

Revision as of 05:17, 16 October 2018

Team:Kyoto/Project - 2018.igem.org

Motivation

Na+濃度はRNAフォールディング(文献有)、DNAの2重鎖構造(文献つける必要)、タンパク質間の相互作用に大きな影響を与える。そしてiGEMerたちは海水中から重金属を回収したり、タンパク質間の作用を利用して何かを検出するデバイスを作成したりする。つまり、iGEMチームが開発するツールは、過酷な状況に置かれたり、Na+濃度を減らす必要があったりする。それらの効果を最大限に発揮するためにその生物の耐塩性を向上させたりNa+濃度を調節したりする必要がある。今年、私たちiGEM Kyotoは過酷な状況でも生育できたり、Na+を回収したりする酵母の作成に挑みました。(H&Pの意見を取り入れ)バイオセーフティーのために酵母を凝集させることも目指しました。

Na+濃度が関わる様々な生命現象
イントロダクションで述べたようにNa+濃度はmacromoleculeの反応性にとても重要な影響を及ぼす。濃度が適切でないとRNAフォールディングはうまくなされないし、濃度が高いと分子同士の結合が阻害される一方で、低いと非特異的な結合が多くなる。例えば、私たちが数種類の塩濃度条件下でGPFのpull down assayを行ったところ、そのような結果が得られた(More detail is Here (GFPパーツE1010へのリンク))
RNAフォールディングとか、タンパク質間の作用のイラスト
生物がもつトランスポーターの特異性(化学的な膜では特定のイオンを選択的に除くのは難しい)