Difference between revisions of "Team:Bordeaux/Description"

 
(18 intermediate revisions by the same user not shown)
Line 32: Line 32:
  
 
         .text_intro {
 
         .text_intro {
            background-color: #ffffff !important;
 
 
             padding: 4% 4% 4% 4%;
 
             padding: 4% 4% 4% 4%;
 +
            position: relative;
 +
 
         }
 
         }
  
Line 182: Line 183:
 
         .text_intro img {
 
         .text_intro img {
 
             filter: drop-shadow(5px 5px 5px #2222224d);
 
             filter: drop-shadow(5px 5px 5px #2222224d);
 +
        }
 +
 +
        .bg-semiwhite {
 +
            background-color: #fffc;
 
         }
 
         }
 
     </style>
 
     </style>
Line 189: Line 194:
 
     <!-- Main Content-->
 
     <!-- Main Content-->
 
     <!-- Intro Team IGEM-->
 
     <!-- Intro Team IGEM-->
     <div class="container text_intro">
+
    <canvas style="position: fixed; z-index: 0"></canvas>
         <h2>Far Waste in the Landes forest</h2>
+
     <div class="container text_intro" style="margin-top: 50px;">
         <div id="videocontainer" style="z-index:1!important;">
+
         <h1 class="text-longshadow">Far Waste in the Landes forest</h1>
 +
         <div id="videocontainer" style="z-index:1!important; margin-top: 18%; margin-bottom: 50px;">
 
             <video autoplay muted loop id="videobg" style="width:100%!important">
 
             <video autoplay muted loop id="videobg" style="width:100%!important">
 
                 <!-- Source vidéo par défaut -->
 
                 <!-- Source vidéo par défaut -->
Line 199: Line 205:
 
             </video>
 
             </video>
 
         </div>
 
         </div>
         <p>
+
         <div class="bg-semiwhite">
             <img class="col-md-4 img-fluid img-alongtext-left" src="https://static.igem.org/mediawiki/2018/f/fd/T--Bordeaux--description1.png"
+
             <p>
                style="shape-outside: url(https://static.igem.org/mediawiki/2018/f/fd/T--Bordeaux--description1.png);">The Landes forest in our region of Nouvelle Aquitaine is the biggest artificial forest in Europe. The most common
+
                <img class="col-md-4 img-fluid img-alongtext-left" src="https://static.igem.org/mediawiki/2018/f/fd/T--Bordeaux--description1.png"
            tree in this forest is the maritime pine which is an important tree accounting for 25 percent of the wood production
+
                    style="shape-outside: url(https://static.igem.org/mediawiki/2018/f/fd/T--Bordeaux--description1.png);">The Landes forest in our region of Nouvelle Aquitaine is the biggest artificial forest in Europe. The most
            in France. This wood production or other wood work brings many co-products like bark or sawdust; these co-products
+
                common tree in this forest is the maritime pine which is an important tree accounting for 25 percent of the
            are well recycled but a part of this waste still remains. This wood waste represents a huge amount of biomass
+
                wood production in France. This wood production or other wood work brings many co-products like bark or sawdust;
            that could be used to produce many things.</p>
+
                these co-products are well recycled but a part of this waste still remains. This wood waste represents a
        <p>We decided to focus on the transformation of this biomass into some building block, the 2,5-Furandicarboxylic acid
+
                huge amount of biomass that could be used to produce many things.</p>
            (FDCA). A building block is a chemical that possesses some functional group allowing this molecule to be converted
+
            <p>We decided to focus on the transformation of this biomass into some building block, the 2,5-Furandicarboxylic
            into a wide range of useful substances.</p>
+
                acid (FDCA). A building block is a chemical that possesses some functional group allowing this molecule to
        <p>
+
                be converted into a wide range of useful substances.</p>
            <img class="col-md-4 img-fluid float-right" src="https://static.igem.org/mediawiki/2018/3/36/T--Bordeaux--description2.png">FDCA is an interesting building block because of its numerous uses; it can be used to produce biopolymers, that
+
            <p>
            one may develop bioplastics for example,[1] but it also has great advantages in medicine as an anesthetic or
+
                <img class="col-md-4 img-fluid img-alongtext-right" src="https://static.igem.org/mediawiki/2018/3/36/T--Bordeaux--description2.png"
            even in the treatment of kidney stones [2]. FDCA have been ranked as the second most interesting bio based molecule
+
                    style="shape-outside: url(https://static.igem.org/mediawiki/2018/3/36/T--Bordeaux--description2.png);">FDCA is an interesting building block because of its numerous uses; it can be used to produce biopolymers,
            by the Department Of Energy of the US just behind four carbon diacids [3].</p>
+
                that one may develop bioplastics for example,[1] but it also has great advantages in medicine as an anesthetic
        <p>Our main goal is to find a new way to produce this particular building block (FDCA) in order to reduce the use of
+
                or even in the treatment of kidney stones [2]. FDCA have been ranked as the second most interesting bio based
            oil which is currently the main source of building block. It could significantly prevent the pollution derived
+
                molecule by the Department Of Energy of the US just behind four carbon diacids [3].</p>
            from the improper oil use.</p>
+
            <p>Our main goal is to find a new way to produce this particular building block (FDCA) in order to reduce the use
        <p>The first part of our project is already performed in the industry in an environmentally sustainable way. The process
+
                of oil which is currently the main source of building block. It could significantly prevent the pollution
            corresponding to this first part is chemically made. Our main raw material is cellulose (coming from maritime
+
                derived from the improper oil use.</p>
            pine) that we will use for our experiments. First of all, this cellulose will be broken down into glucose by
+
            <p>The first part of our project is already performed in the industry in an environmentally sustainable way. The
            acid hydrolysis, then this glucose will be isomerized into fructose and finally this fructose will be dehydrated
+
                process corresponding to this first part is chemically made. Our main raw material is cellulose (coming from
            into Hydroxymethylfurfural (HMF)[4].</p>
+
                maritime pine) that we will use for our experiments. First of all, this cellulose will be broken down into
        <p>The second part of our project, which is the conversion from HMF to FDCA is also done in the industry but is quite
+
                glucose by acid hydrolysis, then this glucose will be isomerized into fructose and finally this fructose
            polluting, which is why we will use molecular biology to avoid this issue.</p>
+
                will be dehydrated into Hydroxymethylfurfural (HMF)[4].</p>
        <img class="col-md-12 img-fluid" src="https://static.igem.org/mediawiki/2018/0/06/T--Bordeaux--description3.png">
+
            <p>The second part of our project, which is the conversion from HMF to FDCA is also done in the industry but is
        <p>This process is based on the insertion of three different genes into E.Coli to allow it to catalyze the transformation
+
                quite polluting, which is why we will use molecular biology to avoid this issue.</p>
            of HMF into FDCA. HMF is a toxic molecule and studies show that some strains are resistant to it and are able
+
            <img class="col-md-12 img-fluid" src="https://static.igem.org/mediawiki/2018/0/06/T--Bordeaux--description3.png">
            to transform HMF into FDCA. We choose three genes that are HmfH from C. basilensis [6], HmfO from P. putida [7]
+
            <p>This process is based on the insertion of three different genes into
            and Aldh1 from R. ornithinolytica [8]. This transformation is done in E. coli because it is a well-known bacterium
+
                <i>E.coli</i> to allow it to catalyze the transformation of HMF into FDCA. HMF is a toxic molecule and studies
            and it also has a fast growth rate, allowing overnight cultures and genetic experimental results in mere hours.</p>
+
                show that some strains are resistant to it and are able to transform HMF into FDCA. We choose three genes
        <p>These genes will perform the transformation of HMF into FDCA in two separated pathways : one for Aldh1 and one for
+
                that are HmfH from C. basilensis [6], HmfO from P. putida [7] and Aldh1 from R. ornithinolytica [8]. This
            HmfH that can be supported by HmfO which is an aspecific enzyme.</p>
+
                transformation is done in
        <p>We will try many constructions with those genes to understand which one will demonstrate the best yield for the FDCA
+
                <i>E. coli</i> because it is a well-known bacterium and it also has a fast growth rate, allowing overnight cultures
            production. We will also try to improve these constructions, the proteins or even the strains in order to obtain
+
                and genetic experimental results in mere hours.</p>
            a better yield, closer to the one obtained by chemical processes, but in a much more sustainable way.</p>
+
            <p>These genes will perform the transformation of HMF into FDCA in two separated pathways : one for Aldh1 and one
        <div id="ref">
+
                for HmfH that can be supported by HmfO which is an aspecific enzyme.</p>
            <h4>References :</h4>
+
            <p>We will try many constructions with those genes to understand which one will demonstrate the best yield for the
            <ol type="1">
+
                FDCA production. We will also try to improve these constructions, the proteins or even the strains in order
                <li>Corbion : FDCA for PEF
+
                to obtain a better yield, closer to the one obtained by chemical processes, but in a much more sustainable
                    <a href="https://www.corbion.com/bioplastics/products/fdca-for-pef">https://www.corbion.com/bioplastics/products/fdca-for-pef</a>
+
                way.
                </li>
+
            </p>
                <li>Lewkowski J et al., “Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives”.
+
            <div id="ref">
                    2001, ARKIVOC 2001 ; pp. 17-54</li>
+
                <h4>References :</h4>
                <li>Werpy T., Petersen G., et al., “Top Value Added Chemicals from Biomass Volume I — Results of Screening for
+
                <ol type="1">
                    Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I :
+
                    <li>Corbion : FDCA for PEF
                    Results of Screening for Potential Candidates” Other Inf. PBD 1 Aug 2004 Medium: ED; Size: 76 pp. pages
+
                        <a href="https://www.corbion.com/bioplastics/products/fdca-for-pef">https://www.corbion.com/bioplastics/products/fdca-for-pef</a>
                    (2004). DOI : 10.2172/15008859</li>
+
                    </li>
                <li>DESPAX-MACHEFEL S., et al., “Développement de méthodologies de synthèse d’hydroxymethylfurfural a partir
+
                    <li>Lewkowski J et al., “Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives”.
                    de biomasse lignocellulosique” , 2013</li>
+
                        2001, ARKIVOC 2001 ; pp. 17-54</li>
                <li>Liu J1, Tang Y., Wu K., Bi C., Cui Q., et al., “Conversion of fructose into 5-hydroxymethylfurfural (HMF)
+
                    <li>Werpy T., Petersen G., et al., “Top Value Added Chemicals from Biomass Volume I — Results of Screening
                    and its derivatives promoted by inorganic salt in alcohol”, Carbohydr Res, 2012, 10.1016/j.carres.2011.12.006</li>
+
                        for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume
                <li>Koopman F., Wierckx N., de Winde JH., Ruijssenaars HJ., et al., “Identification and characterization of the
+
                        I : Results of Screening for Potential Candidates” Other Inf. PBD 1 Aug 2004 Medium: ED; Size: 76
                    furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14”</li>
+
                        pp. pages (2004). DOI : 10.2172/15008859</li>
                <li>“Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440”, T.
+
                    <li>DESPAX-MACHEFEL S., et al., “Développement de méthodologies de synthèse d’hydroxymethylfurfural a partir
                    Michael et al, Juin 2017, Metabolic Engineering Communications
+
                        de biomasse lignocellulosique” , 2013</li>
                    <a href="https://doi.org/10.1016/j.meteno.2017.02.001">https://doi.org/10.1016/j.meteno.2017.02.001</a>
+
                    <li>Liu J1, Tang Y., Wu K., Bi C., Cui Q., et al., “Conversion of fructose into 5-hydroxymethylfurfural (HMF)
                </li>
+
                        and its derivatives promoted by inorganic salt in alcohol”, Carbohydr Res, 2012, 10.1016/j.carres.2011.12.006</li>
                <li>Yuana H., et al.,, “Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural
+
                    <li>Koopman F., Wierckx N., de Winde JH., Ruijssenaars HJ., et al., “Identification and characterization
                    oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60” , Bioresource
+
                        of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14”</li>
                    Technologies, janvier 2018
+
                    <li>“Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440”,
                    <a href="https://doi.org/10.1016/j.biortech.2017.08.166">https://doi.org/10.1016/j.biortech.2017.08.166</a>
+
                        T. Michael et al, Juin 2017, Metabolic Engineering Communications
                </li>
+
                        <a href="https://doi.org/10.1016/j.meteno.2017.02.001">https://doi.org/10.1016/j.meteno.2017.02.001</a>
            </ol>
+
                    </li>
 +
                    <li>Yuana H., et al.,, “Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural
 +
                        oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60” ,
 +
                        Bioresource Technologies, janvier 2018
 +
                        <a href="https://doi.org/10.1016/j.biortech.2017.08.166">https://doi.org/10.1016/j.biortech.2017.08.166</a>
 +
                    </li>
 +
                </ol>
 +
            </div>
 
         </div>
 
         </div>
 
     </div>
 
     </div>
Line 292: Line 305:
 
     </div>
 
     </div>
 
     <script href="https://2018.igem.org/Team:Bordeaux/Template/bootstrapjs?action=raw"></script>
 
     <script href="https://2018.igem.org/Team:Bordeaux/Template/bootstrapjs?action=raw"></script>
 +
    <script>
 +
        //ninivert, September 2016
 +
 +
        /*VARIABLES*/
 +
 +
        canvas = document.getElementsByTagName('canvas')[0];
 +
        canvas.width = document.body.clientWidth;
 +
        canvas.height = document.body.clientHeight;
 +
 +
        var ctx = canvas.getContext('2d');
 +
 +
 +
 +
        /*Modify options here*/
 +
 +
        //possible characters that will appear
 +
        var characterList = ['A', 'T', 'C', 'G'];
 +
 +
        //stocks possible character attributes
 +
        var layers = {
 +
            n: 5, //number of layers
 +
            letters: [100, 40, 30, 20, 10], //letters per layer (starting from the deepest layer)
 +
            coef: [0.1, 0.2, 0.4, 0.6, 0.9], //how much the letters move from the mouse (starting from the deepest layer)
 +
            size: [16, 22, 36, 40, 46], //font size of the letters (starting from the deepest layer)
 +
            color: ['#d0e8f4', '#dbf0df;', '#ffe9a6', '#ece0ed', '#a6f7be'], //color of the letters (starting from the deepest layer)
 +
            //color: ['#00b0ff', '#ff9100', '#aa00ff', '#64dd17', '#aaa'], //color of the letters (starting from the deepest layer)
 +
            //color: ['#4568DC', '#5F68D1', '#7A69C7', '#9569BD', '#B06AB3'], //color of the letters (starting from the deepest layer)
 +
            font: 'Courier' //font family (of every layer)
 +
        };
 +
 +
        /*End of options*/
 +
 +
 +
 +
        var characters = [];
 +
        var mouseX = document.body.clientWidth / 2;
 +
        var mouseY = document.body.clientHeight / 2;
 +
 +
        var rnd = {
 +
            btwn: function (min, max) {
 +
                return Math.floor(Math.random() * (max - min) + min);
 +
            },
 +
            choose: function (list) {
 +
                return list[rnd.btwn(0, list.length)];
 +
            }
 +
        };
 +
 +
 +
 +
        /*LETTER DRAWING*/
 +
 +
        function drawLetter(char) {
 +
            ctx.font = char.size + 'px ' + char.font;
 +
            ctx.fillStyle = char.color;
 +
 +
            var x = char.posX + (mouseX - canvas.width / 2) * char.coef;
 +
            var y = char.posY + (mouseY - canvas.height / 2) * char.coef;
 +
 +
            ctx.fillText(char.char, x, y);
 +
        }
 +
 +
 +
 +
        /*ANIMATION*/
 +
 +
        document.onmousemove = function (ev) {
 +
            mouseX = ev.pageX - canvas.offsetLeft;
 +
            mouseY = ev.pageY - canvas.offsetTop;
 +
 +
            if (window.requestAnimationFrame) {
 +
                requestAnimationFrame(update);
 +
            } else {
 +
                update();
 +
            }
 +
        };
 +
 +
        function update() {
 +
            clear();
 +
            render();
 +
        }
 +
 +
        function clear() {
 +
            ctx.clearRect(0, 0, canvas.width, canvas.height);
 +
        }
 +
 +
        function render() {
 +
            for (var i = 0; i < characters.length; i++) {
 +
                drawLetter(characters[i]);
 +
            }
 +
        }
 +
 +
 +
 +
        /*INITIALIZE*/
 +
 +
        function createLetters() {
 +
            for (var i = 0; i < layers.n; i++) {
 +
                for (var j = 0; j < layers.letters[i]; j++) {
 +
 +
                    var character = rnd.choose(characterList);
 +
                    var x = rnd.btwn(0, canvas.width);
 +
                    var y = rnd.btwn(0, canvas.height);
 +
 +
                    characters.push({
 +
                        char: character,
 +
                        font: layers.font,
 +
                        size: layers.size[i],
 +
                        color: layers.color[i],
 +
                        layer: i,
 +
                        coef: layers.coef[i],
 +
                        posX: x,
 +
                        posY: y
 +
                    });
 +
 +
                }
 +
            }
 +
        }
 +
 +
        createLetters();
 +
        update();
 +
 +
 +
 +
        /*REAJUST CANVAS AFTER RESIZE*/
 +
 +
        // window.onresize = function () {
 +
        //    location.reload();
 +
        // };
 +
 +
        document.getElementById('close').onclick = function () {
 +
            this.parentElement.style.visibility = 'hidden';
 +
            this.parentElement.style.opacity = '0';
 +
        }
 +
    </script>
 
</body>
 
</body>

Latest revision as of 09:22, 16 October 2018

Loading...

Far Waste in the Landes forest

The Landes forest in our region of Nouvelle Aquitaine is the biggest artificial forest in Europe. The most common tree in this forest is the maritime pine which is an important tree accounting for 25 percent of the wood production in France. This wood production or other wood work brings many co-products like bark or sawdust; these co-products are well recycled but a part of this waste still remains. This wood waste represents a huge amount of biomass that could be used to produce many things.

We decided to focus on the transformation of this biomass into some building block, the 2,5-Furandicarboxylic acid (FDCA). A building block is a chemical that possesses some functional group allowing this molecule to be converted into a wide range of useful substances.

FDCA is an interesting building block because of its numerous uses; it can be used to produce biopolymers, that one may develop bioplastics for example,[1] but it also has great advantages in medicine as an anesthetic or even in the treatment of kidney stones [2]. FDCA have been ranked as the second most interesting bio based molecule by the Department Of Energy of the US just behind four carbon diacids [3].

Our main goal is to find a new way to produce this particular building block (FDCA) in order to reduce the use of oil which is currently the main source of building block. It could significantly prevent the pollution derived from the improper oil use.

The first part of our project is already performed in the industry in an environmentally sustainable way. The process corresponding to this first part is chemically made. Our main raw material is cellulose (coming from maritime pine) that we will use for our experiments. First of all, this cellulose will be broken down into glucose by acid hydrolysis, then this glucose will be isomerized into fructose and finally this fructose will be dehydrated into Hydroxymethylfurfural (HMF)[4].

The second part of our project, which is the conversion from HMF to FDCA is also done in the industry but is quite polluting, which is why we will use molecular biology to avoid this issue.

This process is based on the insertion of three different genes into E.coli to allow it to catalyze the transformation of HMF into FDCA. HMF is a toxic molecule and studies show that some strains are resistant to it and are able to transform HMF into FDCA. We choose three genes that are HmfH from C. basilensis [6], HmfO from P. putida [7] and Aldh1 from R. ornithinolytica [8]. This transformation is done in E. coli because it is a well-known bacterium and it also has a fast growth rate, allowing overnight cultures and genetic experimental results in mere hours.

These genes will perform the transformation of HMF into FDCA in two separated pathways : one for Aldh1 and one for HmfH that can be supported by HmfO which is an aspecific enzyme.

We will try many constructions with those genes to understand which one will demonstrate the best yield for the FDCA production. We will also try to improve these constructions, the proteins or even the strains in order to obtain a better yield, closer to the one obtained by chemical processes, but in a much more sustainable way.

References :

  1. Corbion : FDCA for PEF https://www.corbion.com/bioplastics/products/fdca-for-pef
  2. Lewkowski J et al., “Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives”. 2001, ARKIVOC 2001 ; pp. 17-54
  3. Werpy T., Petersen G., et al., “Top Value Added Chemicals from Biomass Volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals From Biomass Volume I : Results of Screening for Potential Candidates” Other Inf. PBD 1 Aug 2004 Medium: ED; Size: 76 pp. pages (2004). DOI : 10.2172/15008859
  4. DESPAX-MACHEFEL S., et al., “Développement de méthodologies de synthèse d’hydroxymethylfurfural a partir de biomasse lignocellulosique” , 2013
  5. Liu J1, Tang Y., Wu K., Bi C., Cui Q., et al., “Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol”, Carbohydr Res, 2012, 10.1016/j.carres.2011.12.006
  6. Koopman F., Wierckx N., de Winde JH., Ruijssenaars HJ., et al., “Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14”
  7. “Conversion and assimilation of furfural and 5-(hydroxymethyl)furfural by Pseudomonas putida KT2440”, T. Michael et al, Juin 2017, Metabolic Engineering Communications https://doi.org/10.1016/j.meteno.2017.02.001
  8. Yuana H., et al.,, “Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60” , Bioresource Technologies, janvier 2018 https://doi.org/10.1016/j.biortech.2017.08.166