Difference between revisions of "Team:Jiangnan"

Line 134: Line 134:
 
</div>
 
</div>
 
</nav>
 
</nav>
 +
</div>
 +
 +
 +
 +
 +
 +
<div>
 +
<div id="indexmain">
 +
<img src="https://static.igem.org/mediawiki/2018/3/34/T--Jiangnan--main--indexmain.png" width="100%" height="700">
 +
<img src="https://static.igem.org/mediawiki/2018/5/50/T--Jiangnan--main--indexforw.png" width="100%" style="position: absolute;top: 585px;">
 +
<div class="center" style="width: 100%;position: absolute;top: 550px;">
 +
<img id="readnext" class="animated infinite bounce" src="https://static.igem.org/mediawiki/2018/9/9b/T--Jiangnan--main--readnext.png" width="100" height="100" style="">
 +
</div>
 +
</div>
 +
<div id="description">
 +
<img src="https://static.igem.org/mediawiki/2018/0/0b/T--Jiangnan--main--description.png" width="100%" height="700">
 +
<div style="width: 100%;position: absolute; top: 750px;text-align: center;">
 +
<img src="https://static.igem.org/mediawiki/2018/f/f3/T--Jiangnan--main--logo.png" width="100">
 +
<h5>Project Description</h5>
 +
<br>
 +
<p>The goal of our project is to enable 3 features of our chassis cell, i.e.</p>
 +
<p>high titration, suspension cultivation, and broad spectrum to reduce the production cost and increase the yield of viruses for vaccine production.</p>
 +
<p>The chassis cell we used here is. MDBK cells.</p>
 +
</div>
 +
<div class="row" style="width: 100%; position: absolute; top: 1200px; margin-bottom: 0px;">
 +
<div class="col s4 center" style="display: inline;">
 +
<img id="sus" src="https://static.igem.org/mediawiki/2018/c/cf/T--Jiangnan--main--sus.png" width="150" style="position: relative;">
 +
<p></p>
 +
<img src="https://static.igem.org/mediawiki/2018/d/dd/T--Jiangnan--main--sustitle.png" width="150" style="position: relative;bottom: 20px;">
 +
</div>
 +
<div class="col s4 center" style="display: inline;">
 +
<img id="broad" src="mainimages/broad.png" width="150" style="position: relative;">
 +
<p></p>
 +
<img src="https://static.igem.org/mediawiki/2018/a/ab/T--Jiangnan--main--broadtitle.png" width="150" style="position: relative;bottom: 20px;">
 +
</div>
 +
<div class="col s4 center" style="display: inline;">
 +
<img id="high" src="https://static.igem.org/mediawiki/2018/9/96/T--Jiangnan--main--high.png" width="150" style="position: relative;">
 +
<p></p>
 +
<img src="https://static.igem.org/mediawiki/2018/d/d8/T--Jiangnan--main--hightitle.png" width="150" style="position: relative;bottom: 20px;">
 +
</div>
 +
</div>
 +
</div>
 +
<div id="high_titer" class="scrollspy">
 +
<div style="color:white;width: 100%;height: 700px"></div>
 +
<img src="https://static.igem.org/mediawiki/2018/6/69/T--Jiangnan--main--high_titerforw.png" width="100%" height="700" style="position: absolute;top: 1400px;">
 +
<div style="position: absolute;top: 1600px; left: 40px">
 +
<img src="https://static.igem.org/mediawiki/2018/d/d8/T--Jiangnan--main--hightitle.png" width="300">
 +
<br>
 +
<br>
 +
<p style="width: 700px;">Through bioinformatics analysis and mathematical modeling, we constructed the network regulating virus titration of cells. The top gene was selected, functionally validated in vitro and used for genomic modulation in the chassis cells to enable them the feature of increased titration. On the other hand, we manufactured a device to generate cold atmospheric plasma, using which cell titration was further increased in response to plasma irradiation. </p>
 +
</div>
 +
<img id="highmove" src="https://static.igem.org/mediawiki/2018/9/96/T--Jiangnan--main--high.png" width="400" height="400" style="position: absolute;top: 1550px;right: 40px;">
 +
</div>
 +
<div id="suspension" class="scrollspy">
 +
<div style="color:white;width: 100%;height: 700px"></div>
 +
<img src="https://static.igem.org/mediawiki/2018/e/e9/T--Jiangnan--main--suspensionforw.png" width="100%" height="700" style="position: absolute;top: 2100px;">
 +
<div style="position: absolute;top: 2200px; left: 40px">
 +
<img src="https://static.igem.org/mediawiki/2018/d/dd/T--Jiangnan--main--sustitle.png" width="300">
 +
<br>
 +
<br>
 +
<p style="width: 700px;">Through high throughput sequencing of two pairs of cells with and without the suspension feature, we found a panel of genes responsible for the suspension feature of cells following network construction using computational approach. The top gene was functionally validated before applied to the chassis cell for genomic modulation. </p>
 +
</div>
 +
<img id="susmove" src="https://static.igem.org/mediawiki/2018/0/00/T--Jiangnan--main--susmove.png" width="400" style="position: absolute;top: 2200px;right: 40px;">
 +
</div>
 +
<div id="broadspectrum" class="scrollspy">
 +
<div style="color:white;width: 100%;height: 700px"></div>
 +
<img src="https://static.igem.org/mediawiki/2018/0/0b/T--Jiangnan--main--broad_specmforw.png" width="100%" height="700" style="position: absolute;top: 2800px;">
 +
<div style="position: absolute;top: 3000px;left: 40px">
 +
<img src="https://static.igem.org/mediawiki/2018/a/ab/T--Jiangnan--main--broadtitle.png" width="300">
 +
<br>
 +
<br>
 +
<p style="width: 700px;">Through text mining, we classified cell receptors according to the Baltimore subtyping of viruses and summarized the primary receptors mediating the entry of different types of viruses. After systematic analysis, we aim to express Nectin 4 and Tfr on our chassis cells to make them possible to a broad spectrum of viruses.
 +
</p>
 +
</div>
 +
<img id="broadmove" src="https://static.igem.org/mediawiki/2018/4/42/T--Jiangnan--main--broadmove.png" width="400" style="position: absolute; top: 3000px; right: 40px;">
 +
</div>
 +
    <div id="sideguide" class="col hide-on-small-only m3 l2" style="position: fixed;right: 30px; top: 200px;display: none;">
 +
      <ul class="section table-of-contents">
 +
        <li><a href="#high_titer">High titration</a></li>
 +
        <li><a href="#suspension">Suspension</a></li>
 +
        <li><a href="#broadspectrum">Broad spectrum</a></li>
 +
      </ul>
 +
    </div>
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 14:02, 26 June 2018

Project Description

The goal of our project is to enable 3 features of our chassis cell, i.e.

high titration, suspension cultivation, and broad spectrum to reduce the production cost and increase the yield of viruses for vaccine production.

The chassis cell we used here is. MDBK cells.



Through bioinformatics analysis and mathematical modeling, we constructed the network regulating virus titration of cells. The top gene was selected, functionally validated in vitro and used for genomic modulation in the chassis cells to enable them the feature of increased titration. On the other hand, we manufactured a device to generate cold atmospheric plasma, using which cell titration was further increased in response to plasma irradiation.



Through high throughput sequencing of two pairs of cells with and without the suspension feature, we found a panel of genes responsible for the suspension feature of cells following network construction using computational approach. The top gene was functionally validated before applied to the chassis cell for genomic modulation.



Through text mining, we classified cell receptors according to the Baltimore subtyping of viruses and summarized the primary receptors mediating the entry of different types of viruses. After systematic analysis, we aim to express Nectin 4 and Tfr on our chassis cells to make them possible to a broad spectrum of viruses.