Difference between revisions of "Team:Mingdao/Description"

 
(233 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{:Team:Mingdao/test}}
+
{{:Team:Mingdao/test9}}
 
<html lang="en">
 
<html lang="en">
 
   <head>
 
   <head>
Line 5: Line 5:
 
     <link href='https://fonts.googleapis.com/css?family=Arizonia' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Arizonia' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
     <title>Safety</title>
+
     <title>Description</title>
  </head>
+
 
+
    <style type="text/css">
+
  
 +
<style type="text/css">
 
* {
 
* {
 
   margin: 0;
 
   margin: 0;
Line 20: Line 18:
 
   padding: 0;
 
   padding: 0;
 
   font-family: 'Ubuntu' !important; }
 
   font-family: 'Ubuntu' !important; }
.top {
 
  position: fixed;
 
  right: 50px;
 
  bottom: 50px;
 
  height: 50px;
 
  width: 50px;
 
  cursor: pointer; }
 
  .top img {
 
    width: 100%; }
 
  
 
.bg-container {
 
.bg-container {
 +
  background-attachment: fixed;
 +
  background-color: white;
 +
  margin-top:-10px;
 +
margin-bottom:100px;
 
   overflow: hidden;
 
   overflow: hidden;
 
   position: relative;
 
   position: relative;
  background-color: #c5d7d9;
+
   background-image: url(https://static.igem.org/mediawiki/2018/5/59/T--Mingdao--Projectbackground.jpg);
   background-image: url(https://static.igem.org/mediawiki/2017/d/da/T--CSMU_NCHU_Taiwan--DesignBg.png);
+
   background-repeat: no-repeat;
   background-repeat: repeat-y;
+
 
   background-size: 100%;
 
   background-size: 100%;
 +
 
}
 
}
 
  
 
.my-main-container {
 
.my-main-container {
 
   width: 100%;
 
   width: 100%;
 
   padding: 50px 7%;
 
   padding: 50px 7%;
 +
 
  }
 
  }
  
 
.main-content {
 
.main-content {
   background-color: white;
+
   background-color: rgba(225,225,225, .35613154535);
 
   width: 80%;
 
   width: 80%;
 
   margin-left: 10%;
 
   margin-left: 10%;
 
   padding: 50px;
 
   padding: 50px;
 
   min-height: 180vh;
 
   min-height: 180vh;
  z-index: 10; }
+
margin-top:600px;
 +
}
  
 
.text-area {
 
.text-area {
 
   margin-bottom: 80px; }
 
   margin-bottom: 80px; }
 
   .text-area h1 {
 
   .text-area h1 {
     font-size: 60px;
+
     font-size: 130px;
 
     font-weight: 700;
 
     font-weight: 700;
 
     font-family: 'Arizonia' !important;
 
     font-family: 'Arizonia' !important;
Line 65: Line 59:
 
     font-weight: 500; }
 
     font-weight: 500; }
  
.text-area img {
+
.m-block img {
 
   width: 100%; }
 
   width: 100%; }
 
.pdfbtn {
 
  width: 100%;
 
  margin: 20px 0 10px 0;
 
  padding: 10px 20px;
 
  border-radius: 5px;
 
  background-color: #556b7e;
 
  color: white;
 
  display: block;
 
  position: relative; }
 
  .pdfbtn i {
 
    position: absolute;
 
    right: 50px;
 
    top: 50%;
 
    transform: translateY(-50%); }
 
 
.pdf-container {
 
  width: 100%;
 
  text-align: left;
 
  height: 100vh;
 
  display: none; }
 
#HQ_page .path .pathWord p {
 
      font-weight: 700;
 
      text-align: left !important;
 
      font-size: 16px;
 
}
 
#HQ_page .text-area p {
 
  font-size: 22px;
 
  font-family: 'Ubuntu';
 
  font-weight: 500; }
 
img.center {
 
  display: block;
 
  margin: 0 auto; }
 
p.center {
 
  margin: 0 auto; }
 
 
#HQ_page .text-area h2 {
 
    text-align: center;
 
    margin-bottom: 2rem !important;
 
    margin-top: 2rem;
 
    color: black !important;
 
    font-size:28px;
 
    font-weight:bold;
 
}
 
.fig{
 
    font-size:18px !important;
 
}
 
  
 
.path-btns {
 
.path-btns {
 +
z-index:0;
 
   position: fixed;
 
   position: fixed;
 
   width: 250px;
 
   width: 250px;
   top: 200px;
+
   top: 150px;
 
   left: 225px; }
 
   left: 225px; }
 +
 
   .path-btns .path-dot {
 
   .path-btns .path-dot {
 
     width: 25px;
 
     width: 25px;
Line 135: Line 84:
 
       transition: all .3s;
 
       transition: all .3s;
 
       transform: scale(1.2); }
 
       transform: scale(1.2); }
 
  
 
.path {
 
.path {
   height: 65px;
+
   height: 80px;
 
   display: flex; }
 
   display: flex; }
 
   .path .pathSvg {
 
   .path .pathSvg {
Line 149: Line 97:
 
     .path .path-btn.path-active {
 
     .path .path-btn.path-active {
 
       fill: #385e66; }
 
       fill: #385e66; }
 +
  .path .path-word-sm {
 +
    font-size: 12px; }
 +
#HQ_page .path .pathWord p {
 +
      font-weight: 700;
 +
      text-align: left !important;
 +
      font-size: 16px;
 +
}
 +
#HQ_page .text-area p {
 +
  font-size: 22px;
 +
  font-family: 'Ubuntu';
 +
  font-weight: 500; }
 +
img.center {
 +
  display: block;
 +
  margin: 0 auto; }
  
 +
.text-area h2{
 +
    text-align: center;
 +
    margin-bottom: 2rem !important;
 +
    margin-top: 2rem;
 +
    color: black !important;
 +
    font-size: 40px;
 +
    font-weight:bold;
 +
    font-family:serif;
 +
}
 +
  .text-area h3{
 +
  text-align: left;
 +
  margin-bottom: 2rem !important;
 +
  margin-top: 2rem;
 +
  color: #4682B4  !important;
 +
  font-size: 28px;
 +
  font-weight:bold;
 +
}
 +
 +
.top {
 +
  position: fixed;
 +
  right: 50px;
 +
  bottom: 50px;
 +
  height: 50px;
 +
  width: 50px;
 +
  cursor: pointer; }
 +
  .top img {
 +
    width: 100%; }
 +
img.pic {
 +
  display: block !important;
 +
  margin: 40px auto !important;
 +
}
 +
.top-picture{
 +
  z-index:2;
 +
width:100%;
 +
position:absolute;
 +
}
 +
 +
 +
video {
 +
            position:relative;
 +
            width: 100%;
 +
            height:auto;
 +
            margin: 20px auto !important;
 +
          }
  
 
</style>
 
</style>
   <body>
+
   </head>
     <div class="bg-container">
+
 
 +
<body>
 +
<img class="top-picture" src="https://static.igem.org/mediawiki/2018/a/ad/T--Mingdao--phil38.png" >
 +
     <div class="bg-container" style="max-height:none;">
 
       <div class="my-main-container">
 
       <div class="my-main-container">
 
         <div class="main-content">
 
         <div class="main-content">
 
           <div class="text-area">
 
           <div class="text-area">
             <h1>Design</h1>
+
              
            <img class = "center" src="https://static.igem.org/mediawiki/2017/1/16/T--CSMU_NCHU_Taiwan--design-antidote.png" alt="" style="width:30%" id="antidote-banner">
+
<!-- <h1 id = "d-overview">Project</h1> -->
            <h2>Thioredoxin fusion system</h2>
+
       
            <p style="text-indent:2em">In our project, we used <i>E. coli</i> to express two heterogeneous enzymes from mycobacterium smegmatis. However, we didn’t know whether they were toxic to <i>E. coli</i> and whether they would become inclusion bodies because of insolubility when <i>E. coli</i> produced them. Therefore, we found the thioredoxin fusion proteins system. When the gene of thioredoxin in <i>E. coli</i> (TrxA) were co-expressed, the target proteins were inserted into the active-site loop of thioredoxin, and therefore the fusion proteins can be more soluble<sub>[1]</sub>.</p>
+
<br />
<p style="text-indent:2em">In addition, between the thioredoxin domain and the target gene domain, we designed some linkers to ligase two domains. The first part, which could be translated to the peptide sequence, “DDDDK”, was designed as the cleavage site of enterokinase. There were some restriction sites in the second part. The third one, which could be translated to glycine-glycine, was a flexible linker<sub>[2]</sub>.</p>
+
 
<p class="fig">Fig. 1: BBa_K2382004 showed the gene design of the Thioredoxin fusion system construction.</p>
+
<h2 id="d-intro">Introduction</h2>
            <img class = "center" src="https://static.igem.org/mediawiki/2017/e/ed/Csmuxnchu_description_fig1.png" alt="" style="width:95%">
+
 
            <img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
 
            <h2>Aflatoxin-degrading enzyme: F420-dependent reductase group A</h2>
+
<p style="text-indent:2em">
            <p style="text-indent:2em">F420-dependent reductases (FDR) can be divided into two classes (A and B) and be found in some species of bacteria<sub>[3]</sub>. FDR-A enzymes, has up to 100 times more activity than the other. In this class, MSMEG5998 has the best specific activity to AFB1 (10350 nmol/min/mol enzyme) and AFG1 (103210 nmol/min/mol enzyme). Therefore, we looked for the coding sequence of MSMEG5998, which was registered in NCBI in mycobacterium smegmatis and put the sequence of thioredoxin before it to form a fusion protein. For the purpose of purification through nickel-resin column, we added a 18-bp sequence which can code 6 histidines. In addition, we chose T7 promoter which contains lac operator to express this protein because it can be induced by IPTG. For the terminator, we chose BBa_B0015 because it was commonly used in <i>E. coli</i>. The gene design are shown in <font color="#005882">Fig. 2.</font></p>
+
<strong>Mosquitoes</strong> killed around 725,000 human in a year and are listed as the top 1 cause of death. They are considered as the deadliest animal in the world. Mosquitoes carry mosquito-borne infectious diseases and transmit them by blood sucking from people to people.
<p class="fig">Fig. 2: BBa_K2382006 showed the gene design of the Thioredoxin-MSMEG5998 fusion protein construction.</p>
+
</p>
            <img class = "center" src="https://static.igem.org/mediawiki/2017/e/ee/T--CSMU_NCHU_Taiwan--Design2.png" alt="" style="width:95%">
+
<br />
            <img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
<img class="center" src="https://static.igem.org/mediawiki/2018/0/04/T--Mingdao--phil11.png" alt="" style="width: 20%; margin-bottom: 20px;">
            <h2>The activator of F420: F420-dependent glucose-6-phosphate dehydrogenase</h2>
+
<br />
            <p style="text-indent:2em">F420-dependent glucose-6-phosphate dehydrogenase (FGD) can catalyze D-glucose-6-phosphate (G6P) to become D-6-phsphogluconolactone. The chemical reaction are shown in <font color="#005882">Fig. 3</font><sub>[4]</sub>. This enzyme can be found in many organisms. In order to coordinate with MSMEG5998 and make the two enzymes react more naturally, we chose fgd gene also in mycobacterium smegmatis (strain MC(2) 155).To increase the solubility when <i>E. coli</i> produce this enzyme, we used the same design as Thioredoxin-MSMEG5998 fusion protein to form Thioredoxin-FGD fusion protein and the design is demonstrated in <font color="#005882">Fig. 4</font>.</p>
+
<p style="text-indent:2em">
<p class="fig">Fig. 3: The chemical reaction of G6P and oxidized F420 were catalyzed by FGD.</p>
+
A <strong>syringe</strong> is a medical tool for many purposes. It is used to collect blood from human body and inject drug or vaccine for disease control. However, it is difficult to be recycled and makes environment dangerous due to its needle. Biodegradable alternatives should be considered for environmentally friendly issue.
            <img class = "center" src="https://static.igem.org/mediawiki/2017/c/ce/T--CSMU_NCHU_Taiwan--Design3.jpeg" alt="" style="width:80%">
+
</p>
<p class="fig">Fig. 4: BBa_K2382005 showed the gene design of the Thioredoxin-FGD fusion protein construction.</p>
+
<br />
            <img class = "center" src="https://static.igem.org/mediawiki/2017/9/92/T--CSMU_NCHU_Taiwan--Design4.png" alt="" style="width:95%">
+
<img class="center" src="https://static.igem.org/mediawiki/2018/8/8c/T--Mingdao--phil12.png" alt="" style="width: 20%; margin-bottom: 20px;">
            <img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
<br />
<h2>The function of our proteins in aflatoxin-induced DNA repair pathway</h2>
+
<p style="text-indent:2em">
            <p style="text-indent:2em">When mammalian cells respond to DNA damage from environmental toxins or radiations, the two key signaling components, ATM and ATR were activated and therefore phosphorylated two protein kinases, Chk1 and Chk2<sub>[5]</sub>. All of them will reduce cyclin-dependent kinase (CDK) activity through activation of p53. Finally, inhibition of CDKs, such as p21 slows down or arrests cell-cycle progression. Therefore, we can know whether aflatoxin B1 induces DNA damage in HepG2 cells indirectly through the increasing expression of some markers in p53 pathway<sub>[6]</sub>. In our hypothesis, the modified aflatoxin-degrading enzyme, MSMEG_5998 can directly alleviate the genotoxicity of aflatoxin and indirectly inhibit the activation of p53 pathway by degrading the toxin when co-treatment in HepG2 cells. The model of our hypothesis is demonstrated in <font color="#005882">Fig. 5</font>.</p>
+
<strong>Poor-resource areas </strong>have problems controlling infectious diseases. There are lacks of healthcare volunteers, laboratory facility and even electrical power supply. Those make the situation more difficult when the epidemic occurs.
<p class="fig">Fig. 5: Our hypothesis were demonstrated in this figure.</p>
+
</p>
            <img class = "center" src="https://static.igem.org/mediawiki/2017/d/d2/T--CSMU_NCHU_Taiwan--Design5.png" alt="" style="width:95%">
+
<br />
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
<img class="center" src="https://static.igem.org/mediawiki/2018/a/ac/T--Mingdao--philp1.png" alt="" style="width: 20%; margin-bottom: 20px;">
<img class = "center" src="https://static.igem.org/mediawiki/2017/b/b1/T--CSMU_NCHU_Taiwan--design-teststrip.png" alt="" style="width:30%;margin:20px auto;" id="strip-banner">
+
<br />
            <p style="text-indent:2em">Numerous methods for determining the level of Aflatoxin B1 in food and products have been established. As is well known, high performance liquid chromatography (HPLC) using a fluorescent detector is the most widely adopted means of monitoring Aflatoxin B1. However, HPLC has many disadvantages, including its cost, the complexity of operation of the machines involved, and the extensive preparation of samples. Since a simple and efficient technique for the routine monitoring of food such as grains, peanuts and related products is in an urgent demand, we chose immunostrip as the way to detect aflatoxin.</p>
+
<p style="text-indent:2em">
<p style="text-indent:2em">Traditionally, this type of test strip required a special antibody that binds to aflatoxin, called “monoclonal antibody”. However, it would take a lot of time to produce it in the processes of immunization, fusion and cloning, production of ascites, and characterization of the monoclonal antibody. What’s more, not only is the cost to keep an animal hotel high, but also hybridoma is not stable enough to maintain the quality and quantity of monoclonal antibody. Not to mention the vulnerable Van der Waals force with nanoparticle probe, if the samples are not properly treated before tested, the immunostrip will not detect anything. Therefore, to change the situations of these disadvantages, we made lots of improvement on it.</p>
+
<strong>Genetically engineered (GE) mosquitoes</strong> have been designed to suppress populations and reduce mosquito-borne diseases. To solve the problems of pathogen-transmitting mosquitoes, biodegradable syringe and limited-resource countries, could GE mosquitoes be a smart approach in synthetic biology? 
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
</p>
<h2>scFv- RFP fusion system</h2>
+
<img class="center" src="https://static.igem.org/mediawiki/2018/e/ee/T--Mingdao--philp2.png" alt="" style="width: 30%; margin-bottom: 20px;">
<p style="text-indent:2em">In our project, we designed a fusion protein to replace the traditional monoclonal antibody applied on the immunostrip. The fusion protein that we designed is composed of three domains,scFv, rigid linker, RFP  and His-Tag <font color="#005882">(Fig. 1)</font>.</p>
+
 
<p class="fig">Fig. 1: Using RAPTOR X to simulate the structure and folding of fusion protein. The left side is an anti-aflatoxin scFv, and the right side is an RFP with 6X His-Tag, linked by a rigid protein linker. The simulation result demonstrates that the rigid linker can maintain the distance between two domains, and keeps them from interrupting each other or misfolding.</p>
+
<br /><br />
<img class = "center" src="https://static.igem.org/mediawiki/2017/e/eb/T--CSMU_NCHU_Taiwan--Design6.jpeg" alt="" style="width:60%">
+
<br />
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
<br />
<h2>scFv</h2>
+
<h2 id="d-pest-c">Pest Control</h2>
<p style="text-indent:2em">First, we designed an scFv, Single Chain Variable Fragment, to replace the traditional full-length antibody. Compared with full-length antibody, scFv is not actually a fragment of an antibody, but instead is a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of 10 to about 25 amino acids. For instance, GS linker, the most commonly used protein linker in scFv design, to maintain the flexibility and protein folding. Consequently, it prevents the obstacle for <i>E. coli</i> to produce scFv in this host, since glycosylations are required for the effector functions and are mainly located in the Fc fragment. Nevertheless, this part of the antibody is not present in scFv molecules. The scFv used here exhibited the highest sensitivity against all four major kinds of aflatoxins in a previous research<sub>[7]</sub>.</p>
+
 
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
 
<h2>EAAAK rigid linker</h2>
+
<p style="text-indent:2em">
<p style="text-indent:2em">Second, at the C terminal of the scFv, we use an EAAAK rigid linker to link to maintain the distance between scFv and Red Fluorescent Protein(RFP), preventing unnecessary cross-interaction. This EAAAK rigid linker repeats amino acid “EAAAK” for three times, and it forms  α- helix in its structure<sub>[8]</sub>, exhibiting a rigid and stable property.</p>
+
<strong>Pest control by fluorescence</strong> has been first demonstrated by Dr. Yu-Chan Chao in 1996 and published the research paper on Nature. The diamondback moth larvae were infected with recombinant baculoviruses carrying green fluorescence gene. His study increased the public awareness of benefits of the application of genetic engineering.
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
<br />
<h2>RFP with 6X His-Tag</h2>
+
</p>
<p style="text-indent:2em">Third, right after the rigid linker is a RFP with 6X His-Tag at the end. Since the antibody itself does not exhibit colors, traditional immunostrip shows the result with the aid of gold nanoparticles<font color="#005882">(Fig. 2)</font>.However, the result could be interfered because of many reasons. We add an RFP and a 6X His-Tag in this fusion protein to make it exhibit red color and  improve purification respectively. With this newly designed fusion protein, there’s no need for the immunostrip to use gold nanoparticles, leading to a new generation of aflatoxin detection.</p>
+
<img class="center" src="https://static.igem.org/mediawiki/2018/c/cc/T--Mingdao--Philphoto1.png" alt="" style="width: 60%; margin-bottom: 20px;">
<p style="text-indent:2em">We used a constitutive promoter(BBa_J23101), a common ribosome binding site(BBa_B0034) and a double terminator (BBa_B0015) constructed  in pSB1C3, to express this fusion protein in our project. And this makes of our composite part BBa_K2382010.<font color="#005882">(Fig. 3)</font></p>
+
<br />
<p style="text-indent:2em">However, only strip is not enough because samples with Aflatoxin need to be extracted first. In the lab, we have to crush sample to increase reaction surface area, and using water or organic liquid to extract Aflatoxin B1. So, we also design the kit for helping people to finish this work.</p>
+
<br /><br />
<p class="fig">Fig. 2: The traditional immunostrip use gold nanoparticle to exhibit red color on the antibodies. The red lines on the strip indicate the position of Control line and Test  line with the aid of gold nanoparticles.</p>
+
<br />
<img class = "center" src="https://static.igem.org/mediawiki/2017/e/e5/T--CSMU_NCHU_Taiwan--Design7.jpeg" alt="" style="width:70%">
+
<h2 id="d-x">Xenosurveillance</h2>
<p class="fig">Fig. 3: The scFv compose three domains, scFv, rigid linker, RFP  and His-Tag. This figure describes the design of BBa_K2382010, which can succefully express this fusion protein in pSB1C3.</p>
+
<p style="text-indent:2em">
<img class = "center" src="https://static.igem.org/mediawiki/2017/4/4a/T--CSMU_NCHU_Taiwan--Design8.png" alt="" style="width:95%">
+
<strong>Xenosurveillance </strong>is a novel biotechnology that utilizes blood-fed mosquitoes to conduct surveillance for human and livestock viral pathogens. It could be used to uncover infectious diseases that may soon cause epidemics.
<img src="https://static.igem.org/mediawiki/2017/b/b9/T--CSMU_NCHU_Taiwan--design-line.png" alt="">
+
</p>
<img class = "center" src="https://static.igem.org/mediawiki/2017/f/fe/T--CSMU_NCHU_Taiwan--design-kits.png" alt="" style="width:30%;margin:20px auto;text-align:center !important;" id="kit-banner">
+
<br /><br />
<h2>A small device that accelerates aflatoxin detection</h2>
+
<p style="text-indent:2em">
<h2>Overview</h2>
+
To understand the stability of pathogens digested in midgut of mosquitoes, Dr. Yu Yang fed Anopheles stephensi mosquitoes with non-replicable dengue viruses. 4, 8, 16 and 24 hours post-meal, respectively, RNAs were extracted and subjected to qRT-PCR. The result showed the viral RNA decreased over time but remains detectable for 24 hours after blood feeding (Am J Trop Med Hyg., 2015).
<p style="text-indent:2em">Detection of aflatoxin is an important part of our AFLATOXOUT project. To make the processes of detecting aflatoxin faster, easier and cheaper, we designed a small kit to help us detect aflatoxin. By using the color changes of the test strip installed on the kit, we would know whether the food was contaminated by aflatoxin or not.</p>
+
</p>
<p style="text-indent:2em">We utilized 3D printing technology to develop our kit. The kit is printed with a Polylactic Acid (PLA), an eco-friendly plastic, and it could be degraded naturally.<br><br>The graph below shows the appearance of the kit.</p>
+
<img class="center" src="https://static.igem.org/mediawiki/2018/e/e5/T--Mingdao--Philphoto2.png" alt="" style="width: 70%; margin-bottom: 20px;">
<img class = "center" src="https://static.igem.org/mediawiki/2017/6/6d/T--CSMU_NCHU_Taiwan--Design9.png" alt="" style="width:60%">
+
<img class="center" src="https://static.igem.org/mediawiki/2018/3/3f/T--Mingdao--philpp2.png" alt="" style="width: 70%; margin-bottom: 20px;">
<h2>Component introduction</h2>
+
 
<p>The kit is a composite of 4 components. The following description shows the functions of each part.</p>
+
<br />
<img src="https://static.igem.org/mediawiki/2017/4/4b/T--CSMU_NCHU_Taiwan--Design10.png" alt="" style="width:55%">
+
<br /><br />
<align:"right"><img src="https://static.igem.org/mediawiki/2017/e/e4/T--CSMU_NCHU_Taiwan--Design12.gif" alt="" style="width:35%;margin-left:20px;">
+
<br />
<p>1.Lid<br>The lid works as a part applying force to drive the grinder. User can rotate the lid with the handle and make the grinder work. It also prevents food debris from spilling.<br>2.Grinde<br>Grinder is the place where we put the food that is going to be tested. It breaks the food into smaller particles or powder in order to improve solubility.<br>3.Solvent<br>The special solvent could extract aflatoxin from the food powder. It is sealed with plastic membrane. Once combined with the mixing tank, the membrane would be punctured and the solvent would flow into the tank.<br>4.Mixing tank<br>The mixing tank is the place where the food powder mixed with the solvent. There’s a window on the side of the mixing tank where we can install the test strip.</p>
+
<h2 id="d-m-s">Mosquito Signaling</h2>
 +
<p style="text-indent:2em">
 +
Mosquito immune defense signaling involves well-studied and well-known Toll and Imd intracellular pathways to trigger antimicrobial peptide (AMP) production. Gram-positive bacteria induce Toll signaling, while Gram-negative bacteria induce Imd signaling. However, some promoters may be activated in a synergistic and cross-talk way. Even though Mosquito-borne viruses are controlled by immune signaling in mosquitoes in a currently unidentified pathway, AMP promoter activities were enhanced in mosquito cells in the presence of the viruses.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/1/11/T--Mingdao--project_mos1.png" alt="" style="width: 70%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
To investigate the regulations of AMP in Aedes aegypti cells, Dr. Rudian Zhang cultured Aag2 cells isolated from Aedes aegypti and fed the cells with bacteria such as E. coli, B. subtilis, etc. The RNAs of the cells were extracted 12 hours after bacterial challenge. The AMP gene expression levels were analyzed by qRT-PCR with specific AMP primers. The data represented many of AMP promoters can be activated by challenging with Gram-negative and Gram-positive bacteria. In addition, some are regulated synergistically by cross-talking Toll and Imd pathways such as GAM1, CecN and DefA (Front Cell Infect Microbiol., 2017).
 +
</p>
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/6/60/T--Mingdao--project_mos2.png" alt="" style="width: 50%; margin-bottom: 20px;">
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/1/1f/T--Mingdao--project_mos3.png" alt="" style="width: 50%; margin-bottom: 20px;">
 +
<br />
 +
<br /><br />
 +
<br />
 +
<h2 id="d-experi">Experimental Design</h2>
 +
<p style="text-indent:2em">
 +
To genetically engineer mosquitoes as biodegradable syringes and applied in blood surveillance, we use synthetic biology technique to develop blood testing GE mosquitoes in three ways to detect universal mosquito-borne pathogens, human non-mosquito-borne HIV viruses and versatile human and livestock viruses, respectively.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/d/d3/T--Mingdao--project_exp1.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
First of all, to detect mosquito-borne pathogens, we created a GFP reporter system under the control of an AMP promoter (i.e., GAM1 promoter) through Toll signaling. The Toll forms dimer when sensing the pathogens followed by signaling to activate MyD88 and Rel1. The activated transcription factor Rel1 translocates  to the nucleus and drives the AMP promoters to express antimicrobial peptides. We have tested this system with Gram-negative E. coli and Gram-positive B. subtilis.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/5/59/T--Mingdao--project_exp2.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
Second, to detect non-mosquito-borne human viruses, we designed and developed a GFP reporter system for HIV with synthetic chimera receptor composed of extracellular human CD4 domain fused with transmembrane and intracellular drosophila Toll domains. Dimerization of CD4 constitutively activates Toll signaling and induces AMP (Drosomycin) expression. In the existence of HIV particles, the gp120 of HIV will attach CD4 and prevent the dimerization followed by stop the signaling. As a result, GFP expression will be decreased by time. The system has been tested in response to gp120.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/8/80/T--Mingdao--project_exp3.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
For further extending the application to versatile blood-transmitted viruses, we designed and planned a viral glycoprotein display system on Toll. Viral specific antibody can catch the glycoprotein which will multimerize and activate the Toll signaling. In the existence of virus in the blood, the free form of viral glycoprotein can compete and block the binding sites of antibody receptor, resulting in inhibiting the signaling.  
 +
</p>
 +
 
 +
<br />
 +
<br /><br />
 +
<br />
 +
 
 +
<h2 id="d-design">Design Principle Video</h2>
 +
 
 +
<center><video playinline controls="true" style="width: 80%">
 +
  <source src="https://static.igem.org/mediawiki/2018/5/54/T--Mingdao--HomePage_BriefIntro.mp4" type="video/mp4" >
 +
    </video></center>
 +
 
 +
<br />
 +
<br /><br />
 +
<br />
 +
 
 +
<h2>Reference</h2>
 +
<p>
 +
1. <a href=https://www.nature.com/articles/380396b0>Nature (1996) Pest control by fluorescence.</a> </br>
 +
<p>
 +
2. <a href=https://www.ncbi.nlm.nih.gov/pubmed/26416112>Am J Trop Med Hyg. (2015) Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery.</a
 +
<p>
 +
3. <a href=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291090/>Front Cell Infect Microbiol. (2017) Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Rudian Zhang, et al.</a>
 +
<p>
 +
4. <a href=https://www.ncbi.nlm.nih.gov/pubmed/2449285>Cell. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.</a>
 +
<p>
 +
5. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16917510>Nat Rev Immunol. (2006) Toll-like receptors as molecular switches.</a>  
 +
<p>
 +
6. <a href=https://www.ncbi.nlm.nih.gov/pubmed/21209287>J Immunol. (2011) The Drosophila Toll signaling pathway.</a>
 +
<p>
 +
7. <a href=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524797/>Retrovirology. (2006) Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry.</a>  
 +
<p>
 +
8. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16709847>J Immunol. (2006) Evidence for a domain-swapped CD4 dimer as the coreceptor for binding to class II MHC.</a>  
 +
<p>
 +
9. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16622011>J Immunol. (2006) Triggering of T cell activation via CD4 dimers.</a>
 +
<p>
 +
10. <a href=https://www.ncbi.nlm.nih.gov/pubmed/24550395>J Biol Chem. (2014) Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization.</a>  
 +
<p>
 +
11. <a href=https://www.uniprot.org/uniprot/P01730>UniProtKB - P01730 (CD4_HUMAN)</a>
 +
<p>
 +
12. <a href=https://www.uniprot.org/uniprot/P08953>UniProtKB - P08953 (TOLL_DROME)</a>
 +
 
 +
</p>
 +
<br /><br />
  
          </div>
 
          <div class="pdf-area">
 
            <span class="pdfbtn" id="design-btn-1">Reference<i class="fa fa-caret-down" aria-hidden="true"></i></span>
 
            <div class="pdf-container" id="design-1">
 
<ul>
 
<li>1. LaVallie, E.R. and J.M. McCoy, Gene fusion expression systems in <i>Escherichia coli</i>. Current Opinion in Biotechnology, 1995. 6(5): p. 501-506.</li>
 
<li>2. Chen, X., J. Zaro, and W.-C. Shen, Fusion Protein Linkers: Property, Design and Functionality. Advanced drug delivery reviews, 2013. 65(10): p. 1357-1369.</li>
 
<li>3. Lapalikar, G.V., et al., F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the Actinomycetales. PLoS One, 2012. 7(2): p. e30114.</li>
 
<li>4. Oyugi, M.A., et al., Mechanistic insights into F420-dependent glucose-6-phosphate dehydrogenase using isotope effects and substrate inhibition studies. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2017.</li>
 
<li>5. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-1078.</li>
 
<li>6. Boehme, K., et al., Activation of P53 in HepG2 cells as surrogate to detect mutagens and promutagens in vitro. Toxicology Letters, 2010. 198(2): p. 272-281.</li>
 
<li>7. Li, X., et al., Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity. Anal Chem, 2012. 84(12): p. 5229-35.</li>
 
<li>8. Chen, X., Zaro, J. L., & Shen, W. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357-1369. doi:10.1016/j.addr.2012.09.039</li>
 
</ul>
 
            </div>
 
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
    <div class="top">
+
 
      <img src="https://static.igem.org/mediawiki/2017/5/52/T--CSMU_NCHU_Taiwan--top.png" alt="">
+
    </div>
+
 
     <div class="path-btns" style="left:0;">
 
     <div class="path-btns" style="left:0;">
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "70">
+
           <svg width="80" height = "80">
             <rect x ="36" y="20" width="6" height="50" style="fill:#385e66"/>
+
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-antidote-btn" class="path-dot"></div>
+
         <div id="intro-btn" class="path-dot"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Antidote</p>
+
           <p>Introduction</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "70">
+
           <svg width="80" height = "80">
             <rect x ="36" y="20" width="6" height="50" style="fill:#385e66"/>
+
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-strip-btn" class="path-dot" style="top: 69px"></div>
+
         <div id="pest-c-btn" class="path-dot" style="top: 80px"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Test Strip</p>
+
           <p>Pest Control</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "70">
+
           <svg width="80" height = "80">
             <rect x ="36" y="20" width="0" height="50" style="fill:#385e66"/>
+
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-kit-btn" class="path-dot" style="top: 132px"></div>
+
         <div id="x-btn" class="path-dot" style="top: 160px"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Kit</p>
+
           <p>Xenosurveillance</p>
 
         </div>
 
         </div>
 +
      </div>
  
 +
      <div class="path">
 +
        <div class="pathSvg">
 +
          <svg width="80" height = "80">
 +
            <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 +
          </svg>
 +
        </div>
 +
        <div id="m-s-btn" class="path-dot" style="top: 240px"></div>
 +
        <div class="pathWord path-word-sm">
 +
          <p>Mosquito Signaling</p>
 +
        </div>
 
       </div>
 
       </div>
 +
 +
    <div class="path">
 +
        <div class="pathSvg">
 +
          <svg width="80" height = "80">
 +
            <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 +
          </svg>
 +
        </div>
 +
        <div id="experi-btn" class="path-dot" style="top: 320px"></div>
 +
        <div class="pathWord path-word-sm">
 +
          <p>Experimental Design</p>
 +
        </div>
 +
      </div>
 +
 +
    <div class="path">
 +
        <div class="pathSvg">
 +
          <svg width="80" height = "80">
 +
            <rect x ="36" y="20" width="0" height="80" style="fill:#385e66"/>
 +
          </svg>
 +
        </div>
 +
        <div id="design-btn" class="path-dot" style="top: 400px"></div>
 +
        <div class="pathWord path-word-sm">
 +
          <p>Design Principle Video</p>
 +
        </div>
 +
      </div>
 +
 +
    </div>
 +
 +
    <div class="top">
 +
      <img src="https://static.igem.org/mediawiki/2018/5/58/T--Mingdao--go_to_top.jpg" alt="">
 
     </div>
 
     </div>
 
   </body>
 
   </body>
 +
 
   <script type="text/javascript">
 
   <script type="text/javascript">
     $('#design-btn-1').on('click', function(){
+
     $("#intro-btn").click(function() {
       $('#design-1').css('height','80vh')
+
       $('html, body').animate({
      $('#design-1').slideToggle("slow");
+
          scrollTop: $("#d-intro").offset().top
       $('.main-content').css('min-height','200vh')
+
       }, 700);
 
     });
 
     });
     $('.top').on('click', function(){
+
     $("#pest-c-btn").click(function() {
       $('html, body').animate({scrollTop: '0px'}, 500);
+
       $('html, body').animate({
 +
          scrollTop: $("#d-pest-c").offset().top
 +
      }, 700);
 
     });
 
     });
        $("#d-antidote-btn").click(function() {
+
    $("#x-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#antidote-banner").offset().top
+
           scrollTop: $("#d-x").offset().top
       }, 500);
+
       }, 700);
 
     });
 
     });
     $("#d-strip-btn").click(function() {
+
     $("#m-s-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#strip-banner").offset().top
+
           scrollTop: $("#d-m-s").offset().top
       }, 500);
+
       }, 700);
 
     });
 
     });
     $("#d-kit-btn").click(function() {
+
     $("#experi-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#kit-banner").offset().top
+
           scrollTop: $("#d-experi").offset().top
       }, 500);
+
       }, 700);
 +
    });
 +
    $("#design-btn").click(function() {
 +
      $('html, body').animate({
 +
          scrollTop: $("#d-design").offset().top
 +
      }, 700);
 
     });
 
     });
  
 
     $(document).ready(function(){
 
     $(document).ready(function(){
 
       $('.top').on('click', function(){
 
       $('.top').on('click', function(){
         $('html, body').animate({scrollTop: '0px'}, 500);
+
         $('html, body').animate({scrollTop: '0px'}, 700);
 
       });
 
       });
         $("#d-antidote-btn").css('background-color', '#385e66');
+
         $("#intro-btn").css('background-color', '#385e66');
 
         var scroll_pos = 0;
 
         var scroll_pos = 0;
 
         $(document).scroll(function() {
 
         $(document).scroll(function() {
 
             scroll_pos = $(this).scrollTop();
 
             scroll_pos = $(this).scrollTop();
  
             d_antidote_pos = $("#antidote-banner").offset().top -200
+
             d_intro_pos = $("#d-intro").offset().top -100
             d_strip_pos = $("#strip-banner").offset().top -200
+
             d_pest_c_pos = $("#d-pest-c").offset().top -100
             d_kit_pos = $("#kit-banner").offset().top -200
+
            d_x_pos = $("#d-x").offset().top -100
 +
            d_m_s_pos = $("#d-m-s").offset().top -100
 +
            d_experi_pos = $("#d-experi").offset().top -100
 +
             d_design_pos = $("#d-design").offset().top -100
  
             // overview
+
             // Introduction
             if(scroll_pos < d_strip_pos) {
+
             if(scroll_pos < d_pest_c_pos) {
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-antidote-btn").css('background-color', '#385e66');
+
                 $("#intro-btn").css('background-color', '#385e66');
             // intro
+
}
             } else if(scroll_pos < d_kit_pos){
+
 
               if(scroll_pos >= d_strip_pos){
+
            // Pest Control
 +
            else if(scroll_pos < d_x_pos){
 +
              if(scroll_pos >= d_pest_c_pos){
 +
                $(".path-dot").css('background-color', '#fff')
 +
                $("#pest-c-btn").css('background-color', '#385e66');}
 +
}
 +
 
 +
             // Xenosurveillance
 +
             else if(scroll_pos < d_m_s_pos){
 +
               if(scroll_pos >= d_x_pos){
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-strip-btn").css('background-color', '#385e66');}
+
                 $("#x-btn").css('background-color', '#385e66');}
 
             }
 
             }
             //detective
+
 
            else if( scroll_pos >= d_kit_pos) {
+
             // Xenosurveillance
 +
            else if(scroll_pos < d_experi_pos){
 +
              if(scroll_pos >= d_m_s_pos){
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-kit-btn").css('background-color', '#385e66');
+
                 $("#m-s-btn").css('background-color', '#385e66');}
 +
            }
 +
            // Xenosurveillance
 +
            else if(scroll_pos < d_design_pos){
 +
              if(scroll_pos >= d_experi_pos){
 +
                $(".path-dot").css('background-color', '#fff')
 +
                $("#experi-btn").css('background-color', '#385e66');}
 +
            }
 +
 
 +
            //Mosquito Signaling
 +
            else if( scroll_pos >= d_design_pos) {
 +
                $(".path-dot").css('background-color', '#fff')
 +
                $("#design-btn").css('background-color', '#385e66');
 
             }
 
             }
 
         });
 
         });
 
     });
 
     });
</script>
+
  </script>
 +
 
 
</html>
 
</html>
 +
{{:Team:Mingdao/test6}}

Latest revision as of 06:31, 17 October 2018

Description

Introduction

Mosquitoes killed around 725,000 human in a year and are listed as the top 1 cause of death. They are considered as the deadliest animal in the world. Mosquitoes carry mosquito-borne infectious diseases and transmit them by blood sucking from people to people.



A syringe is a medical tool for many purposes. It is used to collect blood from human body and inject drug or vaccine for disease control. However, it is difficult to be recycled and makes environment dangerous due to its needle. Biodegradable alternatives should be considered for environmentally friendly issue.



Poor-resource areas have problems controlling infectious diseases. There are lacks of healthcare volunteers, laboratory facility and even electrical power supply. Those make the situation more difficult when the epidemic occurs.



Genetically engineered (GE) mosquitoes have been designed to suppress populations and reduce mosquito-borne diseases. To solve the problems of pathogen-transmitting mosquitoes, biodegradable syringe and limited-resource countries, could GE mosquitoes be a smart approach in synthetic biology?





Pest Control

Pest control by fluorescence has been first demonstrated by Dr. Yu-Chan Chao in 1996 and published the research paper on Nature. The diamondback moth larvae were infected with recombinant baculoviruses carrying green fluorescence gene. His study increased the public awareness of benefits of the application of genetic engineering.





Xenosurveillance

Xenosurveillance is a novel biotechnology that utilizes blood-fed mosquitoes to conduct surveillance for human and livestock viral pathogens. It could be used to uncover infectious diseases that may soon cause epidemics.



To understand the stability of pathogens digested in midgut of mosquitoes, Dr. Yu Yang fed Anopheles stephensi mosquitoes with non-replicable dengue viruses. 4, 8, 16 and 24 hours post-meal, respectively, RNAs were extracted and subjected to qRT-PCR. The result showed the viral RNA decreased over time but remains detectable for 24 hours after blood feeding (Am J Trop Med Hyg., 2015).





Mosquito Signaling

Mosquito immune defense signaling involves well-studied and well-known Toll and Imd intracellular pathways to trigger antimicrobial peptide (AMP) production. Gram-positive bacteria induce Toll signaling, while Gram-negative bacteria induce Imd signaling. However, some promoters may be activated in a synergistic and cross-talk way. Even though Mosquito-borne viruses are controlled by immune signaling in mosquitoes in a currently unidentified pathway, AMP promoter activities were enhanced in mosquito cells in the presence of the viruses.



To investigate the regulations of AMP in Aedes aegypti cells, Dr. Rudian Zhang cultured Aag2 cells isolated from Aedes aegypti and fed the cells with bacteria such as E. coli, B. subtilis, etc. The RNAs of the cells were extracted 12 hours after bacterial challenge. The AMP gene expression levels were analyzed by qRT-PCR with specific AMP primers. The data represented many of AMP promoters can be activated by challenging with Gram-negative and Gram-positive bacteria. In addition, some are regulated synergistically by cross-talking Toll and Imd pathways such as GAM1, CecN and DefA (Front Cell Infect Microbiol., 2017).





Experimental Design

To genetically engineer mosquitoes as biodegradable syringes and applied in blood surveillance, we use synthetic biology technique to develop blood testing GE mosquitoes in three ways to detect universal mosquito-borne pathogens, human non-mosquito-borne HIV viruses and versatile human and livestock viruses, respectively.



First of all, to detect mosquito-borne pathogens, we created a GFP reporter system under the control of an AMP promoter (i.e., GAM1 promoter) through Toll signaling. The Toll forms dimer when sensing the pathogens followed by signaling to activate MyD88 and Rel1. The activated transcription factor Rel1 translocates to the nucleus and drives the AMP promoters to express antimicrobial peptides. We have tested this system with Gram-negative E. coli and Gram-positive B. subtilis.



Second, to detect non-mosquito-borne human viruses, we designed and developed a GFP reporter system for HIV with synthetic chimera receptor composed of extracellular human CD4 domain fused with transmembrane and intracellular drosophila Toll domains. Dimerization of CD4 constitutively activates Toll signaling and induces AMP (Drosomycin) expression. In the existence of HIV particles, the gp120 of HIV will attach CD4 and prevent the dimerization followed by stop the signaling. As a result, GFP expression will be decreased by time. The system has been tested in response to gp120.



For further extending the application to versatile blood-transmitted viruses, we designed and planned a viral glycoprotein display system on Toll. Viral specific antibody can catch the glycoprotein which will multimerize and activate the Toll signaling. In the existence of virus in the blood, the free form of viral glycoprotein can compete and block the binding sites of antibody receptor, resulting in inhibiting the signaling.





Design Principle Video





Reference

1. Nature (1996) Pest control by fluorescence.

2. Am J Trop Med Hyg. (2015) Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery.

3. Front Cell Infect Microbiol. (2017) Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Rudian Zhang, et al.

4. Cell. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.

5. Nat Rev Immunol. (2006) Toll-like receptors as molecular switches.

6. J Immunol. (2011) The Drosophila Toll signaling pathway.

7. Retrovirology. (2006) Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry.

8. J Immunol. (2006) Evidence for a domain-swapped CD4 dimer as the coreceptor for binding to class II MHC.

9. J Immunol. (2006) Triggering of T cell activation via CD4 dimers.

10. J Biol Chem. (2014) Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization.

11. UniProtKB - P01730 (CD4_HUMAN)

12. UniProtKB - P08953 (TOLL_DROME)



Introduction

Pest Control

Xenosurveillance

Mosquito Signaling

Experimental Design

Design Principle Video