Difference between revisions of "Team:Mingdao/Description"

 
(217 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{:Team:Mingdao/test}}
+
{{:Team:Mingdao/test9}}
 
+
 
<html lang="en">
 
<html lang="en">
 
   <head>
 
   <head>
Line 7: Line 6:
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
 
     <link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet'>
 
     <title>Description</title>
 
     <title>Description</title>
  </head>
 
  
 
<style type="text/css">
 
<style type="text/css">
 
 
* {
 
* {
 
   margin: 0;
 
   margin: 0;
Line 21: Line 18:
 
   padding: 0;
 
   padding: 0;
 
   font-family: 'Ubuntu' !important; }
 
   font-family: 'Ubuntu' !important; }
 
  
 
.bg-container {
 
.bg-container {
 +
  background-attachment: fixed;
 +
  background-color: white;
 
   margin-top:-10px;
 
   margin-top:-10px;
 +
margin-bottom:100px;
 
   overflow: hidden;
 
   overflow: hidden;
 
   position: relative;
 
   position: relative;
   background-image: url(https://static.igem.org/mediawiki/2017/e/eb/T--CSMU_NCHU_Taiwan--DescriptionBg2.png);
+
   background-image: url(https://static.igem.org/mediawiki/2018/5/59/T--Mingdao--Projectbackground.jpg);
   background-repeat: repeat-y;
+
   background-repeat: no-repeat;
 
   background-size: 100%;
 
   background-size: 100%;
 +
 
}
 
}
  
Line 35: Line 35:
 
   width: 100%;
 
   width: 100%;
 
   padding: 50px 7%;
 
   padding: 50px 7%;
 +
 
  }
 
  }
  
 
.main-content {
 
.main-content {
   background-color: white;
+
   background-color: rgba(225,225,225, .35613154535);
 
   width: 80%;
 
   width: 80%;
 
   margin-left: 10%;
 
   margin-left: 10%;
 
   padding: 50px;
 
   padding: 50px;
 
   min-height: 180vh;
 
   min-height: 180vh;
  z-index: 10; }
+
margin-top:600px;
 +
}
  
 
.text-area {
 
.text-area {
 
   margin-bottom: 80px; }
 
   margin-bottom: 80px; }
 
   .text-area h1 {
 
   .text-area h1 {
     font-size: 60px;
+
     font-size: 130px;
 
     font-weight: 700;
 
     font-weight: 700;
 
     font-family: 'Arizonia' !important;
 
     font-family: 'Arizonia' !important;
Line 61: Line 63:
  
 
.path-btns {
 
.path-btns {
 +
z-index:0;
 
   position: fixed;
 
   position: fixed;
 
   width: 250px;
 
   width: 250px;
   top: 200px;
+
   top: 150px;
 
   left: 225px; }
 
   left: 225px; }
 +
 
   .path-btns .path-dot {
 
   .path-btns .path-dot {
 
     width: 25px;
 
     width: 25px;
Line 80: Line 84:
 
       transition: all .3s;
 
       transition: all .3s;
 
       transform: scale(1.2); }
 
       transform: scale(1.2); }
 
  
 
.path {
 
.path {
   height: 100px;
+
   height: 80px;
 
   display: flex; }
 
   display: flex; }
 
   .path .pathSvg {
 
   .path .pathSvg {
Line 114: Line 117:
 
     margin-top: 2rem;
 
     margin-top: 2rem;
 
     color: black !important;
 
     color: black !important;
     font-size: 28px;
+
     font-size: 40px;
 
     font-weight:bold;
 
     font-weight:bold;
 +
    font-family:serif;
 
}
 
}
 
   .text-area h3{
 
   .text-area h3{
   text-align: center;
+
   text-align: left;
 
   margin-bottom: 2rem !important;
 
   margin-bottom: 2rem !important;
 
   margin-top: 2rem;
 
   margin-top: 2rem;
   color: black !important;
+
   color: #4682B4  !important;
   font-size: 26px;
+
   font-size: 28px;
 
   font-weight:bold;
 
   font-weight:bold;
 
}
 
}
Line 138: Line 142:
 
   display: block !important;
 
   display: block !important;
 
   margin: 40px auto !important;
 
   margin: 40px auto !important;
 +
}
 +
.top-picture{
 +
  z-index:2;
 +
width:100%;
 +
position:absolute;
 
}
 
}
 +
  
 
video {
 
video {
Line 146: Line 156:
 
             margin: 20px auto !important;
 
             margin: 20px auto !important;
 
           }
 
           }
 +
 
</style>
 
</style>
 +
  </head>
  
 
<body>
 
<body>
 +
<img class="top-picture" src="https://static.igem.org/mediawiki/2018/a/ad/T--Mingdao--phil38.png" >
 
     <div class="bg-container" style="max-height:none;">
 
     <div class="bg-container" style="max-height:none;">
 
 
       <div class="my-main-container">
 
       <div class="my-main-container">
 
         <div class="main-content">
 
         <div class="main-content">
 
           <div class="text-area">
 
           <div class="text-area">
             <h1 id = "d-overview">Project</h1>
+
              
            <h2>Mosquito as a natural syringe</h2>
+
<!-- <h1 id = "d-overview">Project</h1> -->
 +
       
 +
<br />
  
<video playinline controls="true">
+
<h2 id="d-intro">Introduction</h2>
<source src="https://static.igem.org/mediawiki/2017/7/71/T--CSMU_NCHU_Taiwan--ProjectDescription.mp4" type="video/mp4" >
+
</video>
+
  
            <p style="text-indent:2em">Xenosurveillance
+
 
 +
<p style="text-indent:2em">
 +
<strong>Mosquitoes</strong> killed around 725,000 human in a year and are listed as the top 1 cause of death. They are considered as the deadliest animal in the world. Mosquitoes carry mosquito-borne infectious diseases and transmit them by blood sucking from people to people.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/0/04/T--Mingdao--phil11.png" alt="" style="width: 20%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
A <strong>syringe</strong> is a medical tool for many purposes. It is used to collect blood from human body and inject drug or vaccine for disease control. However, it is difficult to be recycled and makes environment dangerous due to its needle. Biodegradable alternatives should be considered for environmentally friendly issue.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/8/8c/T--Mingdao--phil12.png" alt="" style="width: 20%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
<strong>Poor-resource areas </strong>have problems controlling infectious diseases. There are lacks of healthcare volunteers, laboratory facility and even electrical power supply. Those make the situation more difficult when the epidemic occurs.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/a/ac/T--Mingdao--philp1.png" alt="" style="width: 20%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
<strong>Genetically engineered (GE) mosquitoes</strong> have been designed to suppress populations and reduce mosquito-borne diseases. To solve the problems of pathogen-transmitting mosquitoes, biodegradable syringe and limited-resource countries, could GE mosquitoes be a smart approach in synthetic biology? 
 +
</p>
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/e/ee/T--Mingdao--philp2.png" alt="" style="width: 30%; margin-bottom: 20px;">
 +
 
 +
<br /><br />
 +
<br />
 +
<br />
 +
<h2 id="d-pest-c">Pest Control</h2>
 +
 
 +
 
 +
<p style="text-indent:2em">
 +
<strong>Pest control by fluorescence</strong> has been first demonstrated by Dr. Yu-Chan Chao in 1996 and published the research paper on Nature. The diamondback moth larvae were infected with recombinant baculoviruses carrying green fluorescence gene. His study increased the public awareness of benefits of the application of genetic engineering.
 +
<br />
 +
</p>
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/c/cc/T--Mingdao--Philphoto1.png" alt="" style="width: 60%; margin-bottom: 20px;">
 +
<br />
 +
<br /><br />
 +
<br />
 +
<h2 id="d-x">Xenosurveillance</h2>
 +
<p style="text-indent:2em">
 +
<strong>Xenosurveillance </strong>is a novel biotechnology that utilizes blood-fed mosquitoes to conduct surveillance for human and livestock viral pathogens. It could be used to uncover infectious diseases that may soon cause epidemics.
 +
</p>
 +
<br /><br />
 +
<p style="text-indent:2em">
 +
To understand the stability of pathogens digested in midgut of mosquitoes, Dr. Yu Yang fed Anopheles stephensi mosquitoes with non-replicable dengue viruses. 4, 8, 16 and 24 hours post-meal, respectively, RNAs were extracted and subjected to qRT-PCR. The result showed the viral RNA decreased over time but remains detectable for 24 hours after blood feeding (Am J Trop Med Hyg., 2015).
 +
</p>
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/e/e5/T--Mingdao--Philphoto2.png" alt="" style="width: 70%; margin-bottom: 20px;">
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/3/3f/T--Mingdao--philpp2.png" alt="" style="width: 70%; margin-bottom: 20px;">
 +
 
 +
<br />
 +
<br /><br />
 +
<br />
 +
<h2 id="d-m-s">Mosquito Signaling</h2>
 +
<p style="text-indent:2em">
 +
Mosquito immune defense signaling involves well-studied and well-known Toll and Imd intracellular pathways to trigger antimicrobial peptide (AMP) production. Gram-positive bacteria induce Toll signaling, while Gram-negative bacteria induce Imd signaling. However, some promoters may be activated in a synergistic and cross-talk way. Even though Mosquito-borne viruses are controlled by immune signaling in mosquitoes in a currently unidentified pathway, AMP promoter activities were enhanced in mosquito cells in the presence of the viruses.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/1/11/T--Mingdao--project_mos1.png" alt="" style="width: 70%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
To investigate the regulations of AMP in Aedes aegypti cells, Dr. Rudian Zhang cultured Aag2 cells isolated from Aedes aegypti and fed the cells with bacteria such as E. coli, B. subtilis, etc. The RNAs of the cells were extracted 12 hours after bacterial challenge. The AMP gene expression levels were analyzed by qRT-PCR with specific AMP primers. The data represented many of AMP promoters can be activated by challenging with Gram-negative and Gram-positive bacteria. In addition, some are regulated synergistically by cross-talking Toll and Imd pathways such as GAM1, CecN and DefA (Front Cell Infect Microbiol., 2017).
 +
</p>
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/6/60/T--Mingdao--project_mos2.png" alt="" style="width: 50%; margin-bottom: 20px;">
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/1/1f/T--Mingdao--project_mos3.png" alt="" style="width: 50%; margin-bottom: 20px;">
 +
<br />
 +
<br /><br />
 +
<br />
 +
<h2 id="d-experi">Experimental Design</h2>
 +
<p style="text-indent:2em">
 +
To genetically engineer mosquitoes as biodegradable syringes and applied in blood surveillance, we use synthetic biology technique to develop blood testing GE mosquitoes in three ways to detect universal mosquito-borne pathogens, human non-mosquito-borne HIV viruses and versatile human and livestock viruses, respectively.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/d/d3/T--Mingdao--project_exp1.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
First of all, to detect mosquito-borne pathogens, we created a GFP reporter system under the control of an AMP promoter (i.e., GAM1 promoter) through Toll signaling. The Toll forms dimer when sensing the pathogens followed by signaling to activate MyD88 and Rel1. The activated transcription factor Rel1 translocates  to the nucleus and drives the AMP promoters to express antimicrobial peptides. We have tested this system with Gram-negative E. coli and Gram-positive B. subtilis.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/5/59/T--Mingdao--project_exp2.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
Second, to detect non-mosquito-borne human viruses, we designed and developed a GFP reporter system for HIV with synthetic chimera receptor composed of extracellular human CD4 domain fused with transmembrane and intracellular drosophila Toll domains. Dimerization of CD4 constitutively activates Toll signaling and induces AMP (Drosomycin) expression. In the existence of HIV particles, the gp120 of HIV will attach CD4 and prevent the dimerization followed by stop the signaling. As a result, GFP expression will be decreased by time. The system has been tested in response to gp120.
 +
</p>
 +
<br />
 +
<img class="center" src="https://static.igem.org/mediawiki/2018/8/80/T--Mingdao--project_exp3.png" alt="" style="width: 80%; margin-bottom: 20px;">
 +
<br />
 +
<p style="text-indent:2em">
 +
For further extending the application to versatile blood-transmitted viruses, we designed and planned a viral glycoprotein display system on Toll. Viral specific antibody can catch the glycoprotein which will multimerize and activate the Toll signaling. In the existence of virus in the blood, the free form of viral glycoprotein can compete and block the binding sites of antibody receptor, resulting in inhibiting the signaling.
 +
</p>
 +
 
 +
<br />
 +
<br /><br />
 +
<br />
 +
 
 +
<h2 id="d-design">Design Principle Video</h2>
 +
 
 +
<center><video playinline controls="true" style="width: 80%">
 +
  <source src="https://static.igem.org/mediawiki/2018/5/54/T--Mingdao--HomePage_BriefIntro.mp4" type="video/mp4" >
 +
    </video></center>
 +
 
 +
<br />
 +
<br /><br />
 +
<br />
 +
 
 +
<h2>Reference</h2>
 +
<p>
 +
1. <a href=https://www.nature.com/articles/380396b0>Nature (1996) Pest control by fluorescence.</a> </br>
 +
<p>
 +
2. <a href=https://www.ncbi.nlm.nih.gov/pubmed/26416112>Am J Trop Med Hyg. (2015) Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery.</a> 
 +
<p>
 +
3. <a href=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291090/>Front Cell Infect Microbiol. (2017) Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Rudian Zhang, et al.</a> 
 +
<p>
 +
4. <a href=https://www.ncbi.nlm.nih.gov/pubmed/2449285>Cell. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.</a> 
 +
<p>
 +
5. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16917510>Nat Rev Immunol. (2006) Toll-like receptors as molecular switches.</a>
 +
<p>
 +
6. <a href=https://www.ncbi.nlm.nih.gov/pubmed/21209287>J Immunol. (2011) The Drosophila Toll signaling pathway.</a>
 +
<p>
 +
7. <a href=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1524797/>Retrovirology. (2006) Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry.</a>
 +
<p>
 +
8. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16709847>J Immunol. (2006) Evidence for a domain-swapped CD4 dimer as the coreceptor for binding to class II MHC.</a>
 +
<p>
 +
9. <a href=https://www.ncbi.nlm.nih.gov/pubmed/16622011>J Immunol. (2006) Triggering of T cell activation via CD4 dimers.</a>
 +
<p>
 +
10. <a href=https://www.ncbi.nlm.nih.gov/pubmed/24550395>J Biol Chem. (2014) Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization.</a>
 +
<p>
 +
11. <a href=https://www.uniprot.org/uniprot/P01730>UniProtKB - P01730 (CD4_HUMAN)</a>
 
<p>
 
<p>
Definition
+
12. <a href=https://www.uniprot.org/uniprot/P08953>UniProtKB - P08953 (TOLL_DROME)</a>
  
Application
+
</p>
 +
<br /><br />
  
Paper1, 2, 3 showed that      </p>
 
            <img src="https://static.igem.org/mediawiki/2017/a/a8/T--CSMU_NCHU_Taiwan--safety-line.png" alt="" style="width:100%">
 
            <h2 id = "d-intro">GFP System</h2>
 
            <p style="text-indent:2em">Aflatoxins are common mycotoxins produced by certain mold fungus, including Aspergillus flavus and Aspergillus parasiticus. These toxins are wide spread in many animal feeds and human foods, such as corn, peanut, rice, sorghum, wheat, and a variety of spices. When foods expire, or are exposed to warm and humid environments, they are prone to being contaminated by aflatoxins and could enter the general food supply.</p>
 
<p style="text-indent:2em">There are at least 17 different types of aflatoxins found in nature, and B1, B2, G1, G2 are the commonest type. The “B” and “G” indicate the blue and green fluorescent colors produced by aflatoxins under UV light on thin layer chromatography plates, while the subscript numbers 1 and 2 indicate major and minor compounds, respectively<sub>[1]</sub>. In dairy products, aflatoxin M1 (AFM1) is easily detected when contaminated<sub>[2]</sub>. In the public’s conceptions, cooking or heating can remove harmful substances. However, aflatoxins are a group of stable compounds that would not be degraded unless heated to 280℃. Chances are we may all be exposed to these mycotoxins.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/6/69/T--CSMU_NCHU_Taiwan--ProjectDescription1.png" style="width:50%">
 
            <h3>The harm of Aflatoxin B1</h3>
 
            <p style="text-indent:2em">Aflatoxin B1 (AFB1) is the most toxic and carcinogenic in mammals. Animals that consume AFB1-contaminated food can develop acute and chronic health problems. For acute aflatoxicosis in animals, AFB1 causes liver necrosis in rats<sub>[3]</sub> and hepatitis X in dogs<sub>[4]</sub>. It also causes hemorrhagic necrosis of the liver, bile duct proliferation, edema, and lethargy in human<sub>[5]</sub>.</p>
 
<p style="text-indent:2em">In addition, it is usually reported that more often children rather than adults die from acute aflatoxicosis because adults have higher tolerance for aflatoxin. Despite a certain extent of tolerance in adults, aflatoxins are yet to be feared since they are well-known mycotoxins for their chronic carcinogenesis. AFB1 is the most potent hepatocarcinogen in mammals and it is included in category 1A<sub>[6]</sub>. When aflatoxins are taken into the body, they will first undergo phaseⅠmetabolism in liver. There are a group of heme-binding enzymes called cytochrome P450 (CYP450) involving in the metabolism of endogenous substrates and biotransformation of xenobiotics like aflatoxins. When AFB1 is metabolized into AFB1-exo-8,9-epoxide (AFBO), it can bind to DNA and form DNA adducts<sub>[1]</sub>. If this damage cannot be repaired, it will lead to mutation and probably result in cancer.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/c/c1/T--CSMU_NCHU_Taiwan--ProjectDescription2.png" style="width:60%">
 
          <a name="antidote"></a>
 
            <img src="https://static.igem.org/mediawiki/2017/a/a8/T--CSMU_NCHU_Taiwan--safety-line.png" style="width:100%">
 
            <h2 id="d-antidote">GFP System</h2>
 
            <p style="text-indent:2em">Even though consuming a high dosage of aflatoxin can cause a large amount of harm, there currently are no antidotes for these dangerous mycotoxins. All people can do is to store food properly and avoid eating expired food. We realized that current solutions are quite limited. Our project aims to design a capsule containing enzymes that degrade aflatoxins, finding a solution to reduce the harm caused by aflatoxins.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/1/12/T--CSMU_NCHU_Taiwan--ProjectDescription3.png" style="width:60%">
 
            <h3>The gene of aflatoxin-degrading enzyme</h3>
 
            <p style="text-indent:2em">There are various enzymes found in many microorganisms which have the ability to degrade aflatoxins<sub>[7]</sub>. F420-dependent reductases (FDR) are in an enzyme family produced in some species, like Actinomycetales, Nocardia corynebacterioides, Mycobacterium smegmatis and have almost 100% degradation ability<sub>[8]</sub>. Because MSMEG5998 from Mycobacterium smegmatis has the best enzyme ability<sub>[9]</sub> and has the suitable reaction pH and temperature for human body, we put the gene of this protein into our vector to express it.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/4/4d/T--CSMU_NCHU_Taiwan--ProjectDescription4.png" style="width:70%">
 
            <h3>Enzyme cofactor</h3>
 
            <p style="text-indent:2em">In addition, this enzyme needs a special cofactor, F420, which is only produced in the bacteria when detoxifying aflatoxins. Its structure and function are like the important cofactor in human bodies, FAD. When it becomes the active form, F420H2, it can supply two electrons to be a oxidant. However, F420H2 is unstable and easily oxidized into F420, thus we needed another enzyme, F420-dependent glucose-6-phosphate dehydrogenase (FGD) that is also produced in Mycobacterium smegmatis. This enzyme can maintain the reduced form of F420.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/1/19/T--CSMU_NCHU_Taiwan--ProjectDescription5.png" style="width:70%">
 
            <h3>Linking thioredoxin</h3>
 
            <p style="text-indent:2em">In order to understand whether our two enzymes were soluble in  <i>E. coli</i> and whether they would become inclusion bodies when  <i>E. coli</i> expressed them on a large scale, we modified them. In previous studies, <i>E. coli</i> thioredoxin (trxA) were used to form a fusion gene expression system to increase the solubility of target proteins<sub>[10]</sub>. Therefore, in our project, we linked thioredoxin with our two proteins through some linkers, which were designed for some restriction sites.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/7/71/T--CSMU_NCHU_Taiwan--ProjectDescription6.png" style="width:70%">
 
<h3>Comparing original and modified proteins</h3>
 
            <p style="text-indent:2em">Moreover, we produced two original enzymes by two plasmids obtained from Taylor, M.C. in CSIRO from Australia and compared whether the two modified version proteins and two original proteins have different solubility and different enzyme activities. We found that both the original and modified (synthetic) MSMEG5998 were able to degrade aflatoxin B1 while only the original FGD could help the reaction.</p>
 
<p style="text-indent:2em">Finally, we chose the better MSMEG5998 and better FGD to test for effects in HepG2, human hepatoma cell line. We discovered that MSMEG5998 could alleviate DNA damage induced by aflatoxin B1 and therefore decrease activation of p53 pathway.</p>
 
            <h3>What we do</h3>
 
            <p style="text-indent:2em">For our antidote, we synthesize enzymes that degrade aflatoxin to a large extent, as well as alleviate some of the DNA damage induced, to reduce the harm of aflatoxins. In addition, we also use yeast to express our recombinant proteins because it is a common and safe vector which is generally recognized as safe (GRAS) approved from FDA.</p>
 
            <a name="test_strip"></a>
 
            <img src="https://static.igem.org/mediawiki/2017/a/a8/T--CSMU_NCHU_Taiwan--safety-line.png" alt="" style="width:100%">
 
            <h2 id="d-detective">Mosquito Immune Signaling</h2>
 
            <p style="text-indent:2em">To solve the problem suffered from aflatoxin B1,the best way is to prevent having contaminated food. The traditional way to detect aflatoxin B1 is using HPLC or ELISA. Although the results are more accurate than the others, it is time wasting and expensive. So, we want to development a new model to make public more intuitive and easier to use. For this, we spend many time to search better way to detect aflatoxin. Fortunately, we found the immune strip is very suitable with our topic. This way is common, low cost and most important that it is very easy to do.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/c/c9/T--CSMU_NCHU_Taiwan--ProjectDescription7.png" style="width:50%">
 
            <h3>Secret of “Y/N”</h3>
 
            <p style="text-indent:2em">Immune reagents work mainly through the antibody and antigen between the specific characteristics of the operation. Then, we can produce antibody specific to aflatoxin. The immunochromatography strips are based on this feature, and the structure of strips are composed by three part. The major part combined with Anti-aflatoxin antibody and gold nano particle is release pad. Second part is coated with antigen and antibody on nitrocellulose membrane. The last part is composed by sample pad and absorbent pad. The absorbent pad provides force for sample to move.</p>
 
            <p style="text-indent:2em"> To make antibody be recognized by eyes, the antibody will be combined with gold nanoparticles<sub>[11]</sub>. The process of immunochromatography need to extract aflatoxin in the sample first. Then, according to the capillary phenomenon, the sample will be attracted to the Anti-aflatoxin antibody with gold nanoparticl.If the sample has aflatoxin, the active site of first antibody would be occupied and couldn’t binding with antigen on nitrocellulose membrane until arrive second antibody. Then complex of first antibody would move toward absorbent pad. Because the complex has the antigen of sample, it couldn’t bind with antigen on nitrocellulose membrane until arrive at second antibody. The result can be recognized through red line on the strip.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/8/89/T--CSMU_NCHU_Taiwan--ProjectDescription8.png" style="width:70%">
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/9/90/T--CSMU_NCHU_Taiwan--ProjectDescription9.png" style="width:70%">
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/2/25/T--CSMU_NCHU_Taiwan--ProjectDescription99.png" style="width:95%">
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/e/e4/T--CSMU_NCHU_Taiwan--ProjectDescription11.png" style="width:70%">
 
<img class="center" src="https://static.igem.org/mediawiki/2017/a/a8/T--CSMU_NCHU_Taiwan--safety-line.png" style="width:80%;" alt="">
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/8/80/T--CSMU_NCHU_Taiwan--ProjectDescription98.png" style="width:95%">
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/a/a5/T--CSMU_NCHU_Taiwan--ProjectDescription13.png" style="width:70%">
 
            <h3>The New Generation of Antibody!!!</h3>
 
            <p style="text-indent:2em">The traditional antibody on the release pad of test strip is produced with hybridoma. In our perspective, if we can have bacteria such as <i>E. coli</i> that are able to express antibody for us, we can access to higher efficiency in producing antibody. However after we search for the papers online, we found that the process of glycosylation and formation of disulfide bond in post-translational modification of prokaryotes is different with those in eukaryotes. Thus it will not be able to produce the full-length antibody.</p>
 
<p style="text-indent:2em">Then we go further to search whether there is someone who has the similar idea with us. We found that there are methods like phage display that can produce scFv (single chain variable fragment)<sub>[12]</sub>. In our project, besides finding out the scFv combine to aflatoxin from a research published in 2012<sub>[13]</sub>, we will further more improve its function. In the traditional process, we have to bind gold nanoparticles to the antibody in order to observe the result on test strip. To replace this step, we put the sequence of Red Fluorescent Protein into DNA sequence when designing the fusion protein. What’s more the structure of scFv only contain the variable region of antibody, so the control line of the strip which have secondary antibody that bind to the constant region of primary antibody can’t work anymore.</p>
 
<p style="text-indent:2em">To deal with this problem and facilitate the process of purification, we add a His-tag at the end of the fusion protein. After putting the three-dimensional structure of protein into consideration, we add a rigid linker between the RFP and scFv to avoid interference between the two proteins when folding.</p>
 
            <img class="pic" src="https://static.igem.org/mediawiki/2017/a/af/T--CSMU_NCHU_Taiwan--ProjectDescription14.png" style="width:30%">
 
            <h3>What we do</h3>
 
            <p style="text-indent:2em">To improve the way of making the test strip, we constructed the DNA sequence which is composed of scFv and Red Fluorescent Protein.There are two main advantages about this fusion protein. One is that it can reduce the cost to produce aflatoxin antibody compared with using hybridoma because our fusion protein can be expressed abundantly by E.coli. The other is that we don’t need to use gold nanoparticles to show the result. It could simplify the process of making the antibody tested on strip.</p>
 
            <img src="https://static.igem.org/mediawiki/2017/a/a8/T--CSMU_NCHU_Taiwan--safety-line.png" alt="" style="width:100%">
 
            <h2>Reference</h2>
 
<ul>
 
<li>1. Bbosa, G.S., et al., Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health, 2013. 5(10): p. 14.</li>
 
<li>2. Galvano, F., V. Galofaro, and G. Galvano, Occurrence and stability of aflatoxin M1 in milk and milk products: a worldwide review. Journal of Food protection, 1996. 59(10): p. 1079-1090.</li>
 
<li>3. Butler, W., Acute toxicity of aflatoxin B1 in rats. British journal of cancer, 1964. 18(4): p. 756.</li>
 
<li>4. Newberne, P.M., R. Russo, and G.N. Wogan, Acute toxicity of aflatoxin B1 in the dog. Pathologia veterinaria, 1966. 3(4): p. 331-340.</li>
 
<li>5. Williams, J.H., et al., Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American journal of clinical nutrition, 2004. 80(5): p. 1106-1122.</li>
 
<li>6. Creppy, E.E., Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology letters, 2002. 127(1): p. 19-28.</li>
 
<li>7. Adebo, O., et al., Review on microbial degradation of aflatoxins. Critical reviews in food science and nutrition, 2017. 57(15): p. 3208-3217.</li>
 
<li>8. Lapalikar, G.V., et al., F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the Actinomycetales. PLoS One, 2012. 7(2): p. e30114.</li>
 
<li>9. Taylor, M.C., et al., Identification and characterization of two families of F420H2‐dependent reductases from Mycobacteria that catalyse aflatoxin degradation. Molecular microbiology, 2010. 78(3): p. 561-575.</li>
 
<li>10. Lavallie, E.R., et al., A thioredoxin gene fusion expression system that circumvents inclusion body formation in the <i>E. coli</i> cytoplasm. Nature biotechnology, 1993. 11(2): p. 187-193.</li>
 
<li>11. Chandler, J., T. Gurmin, and N. Robinson, The place of gold in rapid tests. Vol. 6. 2000. 37-49.</li>
 
<li>12. Hammers, C.M. and J.R. Stanley, Antibody phage display: technique and applications. The Journal of investigative dermatology, 2014. 134(2): p. e17.</li>
 
<li>13. Li, X., et al., Molecular characterization of monoclonal antibodies against aflatoxins: a possible explanation for the highest sensitivity. Analytical chemistry, 2012. 84(12): p. 5229-5235.</li>
 
</ul>
 
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 +
 
     <div class="path-btns" style="left:0;">
 
     <div class="path-btns" style="left:0;">
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "100">
+
           <svg width="80" height = "80">
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-overview-btn" class="path-dot"></div>
+
         <div id="intro-btn" class="path-dot"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Mosquito Syringe</p>
+
           <p>Introduction</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "100">
+
           <svg width="80" height = "80">
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-intro-btn" class="path-dot" style="top: 100px"></div>
+
         <div id="pest-c-btn" class="path-dot" style="top: 80px"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>GFP System</p>
+
           <p>Pest Control</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "100">
+
           <svg width="80" height = "80">
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
             <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-antidote-btn" class="path-dot" style="top: 200px"></div>
+
         <div id="x-btn" class="path-dot" style="top: 160px"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>Mosquito Signaling</p>
+
           <p>Xenosurveillance</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
       <div class="path">
 
       <div class="path">
 
         <div class="pathSvg">
 
         <div class="pathSvg">
           <svg width="80" height = "100">
+
           <svg width="80" height = "80">
 +
            <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 +
          </svg>
 +
        </div>
 +
        <div id="m-s-btn" class="path-dot" style="top: 240px"></div>
 +
        <div class="pathWord path-word-sm">
 +
          <p>Mosquito Signaling</p>
 +
        </div>
 +
      </div>
 +
 +
    <div class="path">
 +
        <div class="pathSvg">
 +
          <svg width="80" height = "80">
 +
            <rect x ="36" y="20" width="6" height="80" style="fill:#385e66"/>
 +
          </svg>
 +
        </div>
 +
        <div id="experi-btn" class="path-dot" style="top: 320px"></div>
 +
        <div class="pathWord path-word-sm">
 +
          <p>Experimental Design</p>
 +
        </div>
 +
      </div>
 +
 
 +
    <div class="path">
 +
        <div class="pathSvg">
 +
          <svg width="80" height = "80">
 
             <rect x ="36" y="20" width="0" height="80" style="fill:#385e66"/>
 
             <rect x ="36" y="20" width="0" height="80" style="fill:#385e66"/>
 
           </svg>
 
           </svg>
 
         </div>
 
         </div>
         <div id="d-detective-btn" class="path-dot" style="top: 300px"></div>
+
         <div id="design-btn" class="path-dot" style="top: 400px"></div>
 
         <div class="pathWord path-word-sm">
 
         <div class="pathWord path-word-sm">
           <p>AMP System</p>
+
           <p>Design Principle Video</p>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
 
     </div>
 
     </div>
 +
 
     <div class="top">
 
     <div class="top">
       <img src="https://static.igem.org/mediawiki/2017/5/52/T--CSMU_NCHU_Taiwan--top.png" alt="">
+
       <img src="https://static.igem.org/mediawiki/2018/5/58/T--Mingdao--go_to_top.jpg" alt="">
 
     </div>
 
     </div>
 
   </body>
 
   </body>
 +
 
   <script type="text/javascript">
 
   <script type="text/javascript">
     $("#d-overview-btn").click(function() {
+
     $("#intro-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-overview").offset().top
+
           scrollTop: $("#d-intro").offset().top
       }, 500);
+
       }, 700);
 
     });
 
     });
     $("#d-intro-btn").click(function() {
+
     $("#pest-c-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-intro").offset().top
+
           scrollTop: $("#d-pest-c").offset().top
       }, 500);
+
       }, 700);
 
     });
 
     });
     $("#d-antidote-btn").click(function() {
+
     $("#x-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-antidote").offset().top
+
           scrollTop: $("#d-x").offset().top
       }, 500);
+
       }, 700);
 
     });
 
     });
     $("#d-detective-btn").click(function() {
+
     $("#m-s-btn").click(function() {
 
       $('html, body').animate({
 
       $('html, body').animate({
           scrollTop: $("#d-detective").offset().top
+
           scrollTop: $("#d-m-s").offset().top
       }, 500);
+
       }, 700);
 +
    });
 +
    $("#experi-btn").click(function() {
 +
      $('html, body').animate({
 +
          scrollTop: $("#d-experi").offset().top
 +
      }, 700);
 +
    });
 +
    $("#design-btn").click(function() {
 +
      $('html, body').animate({
 +
          scrollTop: $("#d-design").offset().top
 +
      }, 700);
 
     });
 
     });
  
 
     $(document).ready(function(){
 
     $(document).ready(function(){
 
       $('.top').on('click', function(){
 
       $('.top').on('click', function(){
         $('html, body').animate({scrollTop: '0px'}, 500);
+
         $('html, body').animate({scrollTop: '0px'}, 700);
 
       });
 
       });
         $("#d-overview-btn").css('background-color', '#385e66');
+
         $("#intro-btn").css('background-color', '#385e66');
 
         var scroll_pos = 0;
 
         var scroll_pos = 0;
 
         $(document).scroll(function() {
 
         $(document).scroll(function() {
 
             scroll_pos = $(this).scrollTop();
 
             scroll_pos = $(this).scrollTop();
  
            d_overview_pos = $("#d-overview").offset().top -100
 
 
             d_intro_pos = $("#d-intro").offset().top -100
 
             d_intro_pos = $("#d-intro").offset().top -100
             d_antidote_pos = $("#d-antidote").offset().top -100
+
             d_pest_c_pos = $("#d-pest-c").offset().top -100
             d_detective_pos = $("#d-detective").offset().top -100
+
            d_x_pos = $("#d-x").offset().top -100
 +
            d_m_s_pos = $("#d-m-s").offset().top -100
 +
            d_experi_pos = $("#d-experi").offset().top -100
 +
             d_design_pos = $("#d-design").offset().top -100
  
             // overview
+
             // Introduction
             if(scroll_pos < d_intro_pos) {
+
             if(scroll_pos < d_pest_c_pos) {
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-overview-btn").css('background-color', '#385e66');
+
                 $("#intro-btn").css('background-color', '#385e66');
             // intro
+
}
            } else if(scroll_pos < d_antidote_pos){
+
 
               if(scroll_pos >= d_intro_pos){
+
             // Pest Control
 +
            else if(scroll_pos < d_x_pos){
 +
               if(scroll_pos >= d_pest_c_pos){
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-intro-btn").css('background-color', '#385e66');}
+
                 $("#pest-c-btn").css('background-color', '#385e66');}
 +
}
  
             // antidote
+
             // Xenosurveillance
             } else if(scroll_pos < d_detective_pos){
+
             else if(scroll_pos < d_m_s_pos){
               if(scroll_pos >= d_antidote_pos){
+
               if(scroll_pos >= d_x_pos){
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-antidote-btn").css('background-color', '#385e66');}
+
                 $("#x-btn").css('background-color', '#385e66');}
 
             }
 
             }
  
             //detective
+
             // Xenosurveillance
            else if( scroll_pos >= d_detective_pos) {
+
            else if(scroll_pos < d_experi_pos){
 +
              if(scroll_pos >= d_m_s_pos){
 
                 $(".path-dot").css('background-color', '#fff')
 
                 $(".path-dot").css('background-color', '#fff')
                 $("#d-detective-btn").css('background-color', '#385e66');
+
                 $("#m-s-btn").css('background-color', '#385e66');}
 +
            }
 +
            // Xenosurveillance
 +
            else if(scroll_pos < d_design_pos){
 +
              if(scroll_pos >= d_experi_pos){
 +
                $(".path-dot").css('background-color', '#fff')
 +
                $("#experi-btn").css('background-color', '#385e66');}
 +
            }
 +
 
 +
            //Mosquito Signaling
 +
            else if( scroll_pos >= d_design_pos) {
 +
                $(".path-dot").css('background-color', '#fff')
 +
                $("#design-btn").css('background-color', '#385e66');
 
             }
 
             }
 
         });
 
         });
 
     });
 
     });
 
 
   </script>
 
   </script>
  
 
</html>
 
</html>
 +
{{:Team:Mingdao/test6}}

Latest revision as of 06:31, 17 October 2018

Description

Introduction

Mosquitoes killed around 725,000 human in a year and are listed as the top 1 cause of death. They are considered as the deadliest animal in the world. Mosquitoes carry mosquito-borne infectious diseases and transmit them by blood sucking from people to people.



A syringe is a medical tool for many purposes. It is used to collect blood from human body and inject drug or vaccine for disease control. However, it is difficult to be recycled and makes environment dangerous due to its needle. Biodegradable alternatives should be considered for environmentally friendly issue.



Poor-resource areas have problems controlling infectious diseases. There are lacks of healthcare volunteers, laboratory facility and even electrical power supply. Those make the situation more difficult when the epidemic occurs.



Genetically engineered (GE) mosquitoes have been designed to suppress populations and reduce mosquito-borne diseases. To solve the problems of pathogen-transmitting mosquitoes, biodegradable syringe and limited-resource countries, could GE mosquitoes be a smart approach in synthetic biology?





Pest Control

Pest control by fluorescence has been first demonstrated by Dr. Yu-Chan Chao in 1996 and published the research paper on Nature. The diamondback moth larvae were infected with recombinant baculoviruses carrying green fluorescence gene. His study increased the public awareness of benefits of the application of genetic engineering.





Xenosurveillance

Xenosurveillance is a novel biotechnology that utilizes blood-fed mosquitoes to conduct surveillance for human and livestock viral pathogens. It could be used to uncover infectious diseases that may soon cause epidemics.



To understand the stability of pathogens digested in midgut of mosquitoes, Dr. Yu Yang fed Anopheles stephensi mosquitoes with non-replicable dengue viruses. 4, 8, 16 and 24 hours post-meal, respectively, RNAs were extracted and subjected to qRT-PCR. The result showed the viral RNA decreased over time but remains detectable for 24 hours after blood feeding (Am J Trop Med Hyg., 2015).





Mosquito Signaling

Mosquito immune defense signaling involves well-studied and well-known Toll and Imd intracellular pathways to trigger antimicrobial peptide (AMP) production. Gram-positive bacteria induce Toll signaling, while Gram-negative bacteria induce Imd signaling. However, some promoters may be activated in a synergistic and cross-talk way. Even though Mosquito-borne viruses are controlled by immune signaling in mosquitoes in a currently unidentified pathway, AMP promoter activities were enhanced in mosquito cells in the presence of the viruses.



To investigate the regulations of AMP in Aedes aegypti cells, Dr. Rudian Zhang cultured Aag2 cells isolated from Aedes aegypti and fed the cells with bacteria such as E. coli, B. subtilis, etc. The RNAs of the cells were extracted 12 hours after bacterial challenge. The AMP gene expression levels were analyzed by qRT-PCR with specific AMP primers. The data represented many of AMP promoters can be activated by challenging with Gram-negative and Gram-positive bacteria. In addition, some are regulated synergistically by cross-talking Toll and Imd pathways such as GAM1, CecN and DefA (Front Cell Infect Microbiol., 2017).





Experimental Design

To genetically engineer mosquitoes as biodegradable syringes and applied in blood surveillance, we use synthetic biology technique to develop blood testing GE mosquitoes in three ways to detect universal mosquito-borne pathogens, human non-mosquito-borne HIV viruses and versatile human and livestock viruses, respectively.



First of all, to detect mosquito-borne pathogens, we created a GFP reporter system under the control of an AMP promoter (i.e., GAM1 promoter) through Toll signaling. The Toll forms dimer when sensing the pathogens followed by signaling to activate MyD88 and Rel1. The activated transcription factor Rel1 translocates to the nucleus and drives the AMP promoters to express antimicrobial peptides. We have tested this system with Gram-negative E. coli and Gram-positive B. subtilis.



Second, to detect non-mosquito-borne human viruses, we designed and developed a GFP reporter system for HIV with synthetic chimera receptor composed of extracellular human CD4 domain fused with transmembrane and intracellular drosophila Toll domains. Dimerization of CD4 constitutively activates Toll signaling and induces AMP (Drosomycin) expression. In the existence of HIV particles, the gp120 of HIV will attach CD4 and prevent the dimerization followed by stop the signaling. As a result, GFP expression will be decreased by time. The system has been tested in response to gp120.



For further extending the application to versatile blood-transmitted viruses, we designed and planned a viral glycoprotein display system on Toll. Viral specific antibody can catch the glycoprotein which will multimerize and activate the Toll signaling. In the existence of virus in the blood, the free form of viral glycoprotein can compete and block the binding sites of antibody receptor, resulting in inhibiting the signaling.





Design Principle Video





Reference

1. Nature (1996) Pest control by fluorescence.

2. Am J Trop Med Hyg. (2015) Feasibility of Using the Mosquito Blood Meal for Rapid and Efficient Human and Animal Virus Surveillance and Discovery.

3. Front Cell Infect Microbiol. (2017) Regulation of Antimicrobial Peptides in Aedes aegypti Aag2 Cells. Rudian Zhang, et al.

4. Cell. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein.

5. Nat Rev Immunol. (2006) Toll-like receptors as molecular switches.

6. J Immunol. (2011) The Drosophila Toll signaling pathway.

7. Retrovirology. (2006) Association between disruption of CD4 receptor dimerization and increased human immunodeficiency virus type 1 entry.

8. J Immunol. (2006) Evidence for a domain-swapped CD4 dimer as the coreceptor for binding to class II MHC.

9. J Immunol. (2006) Triggering of T cell activation via CD4 dimers.

10. J Biol Chem. (2014) Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization.

11. UniProtKB - P01730 (CD4_HUMAN)

12. UniProtKB - P08953 (TOLL_DROME)



Introduction

Pest Control

Xenosurveillance

Mosquito Signaling

Experimental Design

Design Principle Video