Difference between revisions of "Team:Fudan/Protocols"

Line 303: Line 303:
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>for_comments.pdf</td>
+
<td>Be a Good Lab Member</td>
<td><a href="https://static.igem.org/mediawiki/2018/3/36/T--Fudan--design_for_comments.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--GoodLabPractices.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>banners.pdf</td>
+
<td>Molecular Cloning</td>
<td><a href="https://static.igem.org/mediawiki/2018/8/80/T--Fudan--design_banners.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--MolecularCloning.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>display_board.pdf</td>
+
<td>Tissue Culture</td>
<td><a href="https://static.igem.org/mediawiki/2018/e/e3/T--Fudan--design_display_board.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--CellCulture.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>rolls.pdf</td>
+
<td>Make a Stable Cell Line</td>
<td><a href="https://static.igem.org/mediawiki/2018/f/fc/T--Fudan--design_rolls.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--MakeStableCellLine.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>display_posters.pdf</td>
+
<td>Cell Sorting</td>
<td><a href="https://static.igem.org/mediawiki/2018/4/48/T--Fudan--design_display_posters.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--FACS.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>display_overview.pdf</td>
+
<td>Cell Staining</td>
<td><a href="https://static.igem.org/mediawiki/2018/2/2c/T--Fudan--design_display_overview.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--FixStain.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
<td>table_sets.pdf</td>
+
<td>Time-lapse Live-cell Imaging</td>
<td><a href="https://static.igem.org/mediawiki/2018/8/8a/T--Fudan--design_table_sets.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
+
<td><a href="https://2018.igem.org/File:T--Fudan--TimeLapseImaging.pdf" target="_blank"><i class="fa fa-download"></i></a></td>
 
</tr>
 
</tr>
 
</table>
 
</table>

Revision as of 09:21, 17 October 2018

Our protocols

We provide the full-length protocols as individual PDF files for download, with brief English descriptions on this page.

Our protocols

We provide the full-length protocols as individual PDF files for download, with brief English descriptions on this page.

Figure 4. Fluorescein Standard Curve (log scale) of Fluorescein Concentration (uM) to Fluorescence

Our protocols as PDF files Download
Be a Good Lab Member
Molecular Cloning
Tissue Culture
Make a Stable Cell Line
Cell Sorting
Cell Staining
Time-lapse Live-cell Imaging

For practical reasons, all full-length protocols are in Chinese.

Abstract

Contact-dependent signaling is critical for multicellular biological events, yet customizing contact-dependent signal transduction between cells remains challenging. Here we have developed the ENABLE toolbox, a complete set of transmembrane binary logic gates. Each gate consists of 3 layers: Receptor, Amplifier, and Combiner. We first optimized synthetic Notch receptors to enable cells to respond to different signals across the membrane reliably. These signals, individually amplified intracellularly by transcription, are further combined for computing. Our engineered zinc finger-based transcription factors perform binary computation and output designed products. In summary, we have combined spatially different signals in mammalian cells, and revealed new potentials for biological oscillators, tissue engineering, cancer treatments, bio-computing, etc. ENABLE is a toolbox for constructing contact-dependent signaling networks in mammals. The 3-layer design principle underlying ENABLE empowers any future development of transmembrane logic circuits, thus contributes a foundational advance to Synthetic Biology.