Difference between revisions of "Team:UNSW Australia/Improve"

Line 4: Line 4:
  
 
<html>
 
<html>
 
<div class="header" id="improved-header">
 
<div class="header-img-txt">
 
<div class="top-icon-div">
 
<img height="150px" width="150px" class="top-icon" src="https://static.igem.org/mediawiki/2018/c/c0/T--UNSW_Australia--Icon-parts.png">
 
</div>
 
<div class="bottom-icon-div">
 
<img height="150px" width="150px" class="bottom-icon" src="https://static.igem.org/mediawiki/2018/f/fe/T--UNSW_Australia--Icon-parts-bw.png">
 
</div>
 
<h1 class="shadow-text main-heading">Improved Part</h1>
 
        </div>
 
<div class="header-line">
 
<div id="docs-shadow-line" class="header-line-shadow"></div>
 
</div>
 
</div>
 
  
 
<style>
 
<style>
Line 28: Line 13:
 
   top: 65px;
 
   top: 65px;
 
   width: 300px;
 
   width: 300px;
 +
}
 +
 +
#improved-content {
 +
  margin: 0 10%;
 +
}
 +
 +
#content {
 +
  padding-top: 235px;
 
}
 
}
  
 
</style>
 
</style>
  
<div id="improve-content" class="to-load">
+
 
<div class="box">
+
 
<h2>Overview</h2>
+
<div class="header" id="improved-header">
<p>Protein scaffold components and proteins that attach to the scaffold must be expressed and purified for self-assembly and enzyme activity experiments. Sequence-verified plasmids were heat shock transformed into <em>Escherichia coli</em> cells and expressed for recombinant protein production. The proteins were then purified from cell lysates with Immobilised Metal Affinity Chromatography (IMAC). Nine proteins have been successfully expressed and purified, enabling the construction of our scaffold-enzyme complex.</p>
+
 
 +
<div class=box>
 +
<h2>Abstract</h2>
 +
<p>To express the various components of our scaffold for protein conjugation and assembly experiments, our DNA constructs were cloned into appropriate plasmid vectors. We used Gibson assembly cloning to assemble the DNA inserts with the vectors in one simple isothermal reaction<sup><a href=#references>1</a></sup>. The products of the reaction were transformed into competent DH5-alpha <i>Escherichia coli</i> cells and colonies were screened for recombinant plasmids. Plasmids containing the desired DNA inserts were transformed into T7 cells for protein expression and purification experiments. In total, eight constructs were successfully cloned into corresponding pET-Duet1 and pRSF-Duet1 plasmids, while 6 constructs were cloned into pET-19b plasmids.</p>
 
</div>
 
</div>
  
 
<h2>Introduction</h2>
 
<h2>Introduction</h2>
 +
<p>The components of the prefoldin scaffold and the associated attached enzymes were to be expressed for enzymatic and self-assembly experiments. To produce the proteins required for these analytical experiments, our gene of interests were to be cloned into an appropriate plasmid vector for expression and purification in <i>E. coli</i> cells. This page describes the methods undertaken to produce recombinant plasmids containing our DNA constructs for protein expression. Eight codon optimised DNA constructs were designed and synthesised in the form of g-Blocks from Integrated DNA Technologies (IDT).</p>
  
<p>A large range of proteins are required for the construction and characterisation of our scaffold-enzyme complex. The scaffold consists of the molecular chaperones alpha prefoldin (aPFD) and beta prefoldin (bPFD), derived from <em>Methanobacterium thermoautotrophicum</em><sup><a href="#references">1</a></sup>, fused with SpyCatcher<sup><a href="#references">2</a></sup> (SpyC) and SnoopCatcher<sup><a href="#references">3</a></sup> (SnoopC) respectively on their C-termini. These self-assemble to form a hexameric complex that is able to covalently bind SpyTags and SnoopTags. Two enzymes were designed for attachment to the scaffold: the enzymes tryptophan 2-monooxygenase (IaaM) originating from <em>Pseudomonas savastanoi</em><sup><a href="#references">4</a></sup> fused with a SnoopTag (SnoopT) and indole acetamide hydrolase (IaaH) originating from <em>Alcaligenes sp.</em> Strain HPC1271<sup><a href="#references">5</a></sup> fused with a SpyTag (SpyT). In addition, the fluorescent proteins mVenus and mCerulean3<sup><a href="#references">6</a></sup> were fused with a SpyTag and SnoopTag respectively. All proteins have been expressed with a 6xHis-Tag, utilising the affinity of the HisTag for nickel ions for IMAC purification<sup><a href="#references">7</a></sup>.</p>
+
<p>The hetero-hexameric structure of our scaffold is composed of two alpha prefoldin (aPFD) subunits and four beta prefoldin (bPFD) subunits covalently attached to enzymes<sup><a href=#references>2</a></sup>. To produce a functional and complete scaffold, genes encoding the proteins which form the scaffold must first be cloned into an appropriate vector. Plasmids containing aPFD and bPFD were constructed. In addition, aPFD-SpyCatcher and bPFD-SnoopCatcher fusion constructs were created for comparative enzyme activity experiments.</p>
  
<p>Initial attempts to express these proteins in <em>E. coli</em> using the pET-Duet-1 and pRSF-Duet-1 vectors were unsuccessful, likely due to our design of the plasmids. Following the subcloning of the inserts into a new vector, pET-19b, 5 of these proteins were successfully expressed and purified. In addition, strains of <em>Escherichia coli</em> (<em>E. coli</em>) containing plasmids for His-tagged mVenus, mCerulean3, gamma prefoldin with a C-terminal SpyC (gPFD-SpyC) and gamma prefoldin with an N- and a C-terminal SpyC (SpyC-gPFD-SpyC) were used for protein expression and purification.</p>
+
<p>SpyTags<sup><a href=#references>3</a></sup>and SnoopTags<sup><a href=#references>3</a></sup> were fused to indole-3-acetamide hydrolase (IaaH-SpyTag) and tryptophan 2-monoxygenase (IaaM-SnoopTag) and cloned into appropriate plasmid vectors. Expression of these plasmids would enable protein conjugation experiments with the prefoldin-catcher protein constructs. Fluorescent mCerulean3-SnoopTag and mVenus-SpyTag gBlocks were also cloned into plasmids for Försters Resonance Energy Transfer (FRET) experiments. 6x His-Tags were also attached to the start of each DNA construct via a GSG linker, which would allow the recovery of purified protein.</p>
  
<p>Purification of these proteins enables characterisation of the self-assembly of the scaffold-enzyme complex with Size Exclusion Chromatography (SEC), SDS-PAGE and Transmission Electron Microscopy (TEM) and characterisation of assembly conditions, measurement of enzyme activity with the Salkowski assay and HPLC and characterisation of the distance between attachment sites with F&ouml;rster resonance energy transfer (FRET).</p>
+
<p>All original gBlock designs contain the BioBrick prefix and suffix sequences which were flanked by 20-25 bp long 5’ and 3’ Gibson overhangs. Cloning the BioBrick restriction sites into the DNA construct allowed excision of the insert out from the plasmid vector for diagnostic purposes and for transfer of the inserts into the pSB1C3 BioBrick backbone. Gibson Assembly cloning techniques were used to clone the DNA constructs into the plasmids. 5’ exonuclease activity generates complementary overhang sequences on the insert and vector, and polymerase fills in the gaps of the single strand regions. DNA ligase seals the nicks of the gaps, allowing the two fragments to covalently link together (Figure 1)<sup><a href=#references>1</a></sup>.<p>
  
<p>We have developed a robust method for recombinant expression and purification of our novel protein scaffold. The purity of the proteins was investigated with SDS-PAGE, which is essential to ensure the quality and accuracy of all experimental characterisation of our scaffold-enzyme complex.</p>
+
<div class=image-box>
 +
<img src=https://static.igem.org/mediawiki/2018/5/52/T--UNSW_Australia--cloning-img10-gibson.png>
 +
</div>
  
<h2>Aims</h2>
+
<p class=figure-legend><b>Figure 1:</b> Diagram illustrating the process of Gibson assembly sequence insertion into the plasmid vector<sup><a href=#references>1</a></sup>.</p>
 +
<p>Our DNA constructs were cloned into pETDuet-1 and pRSFDuet-1 plasmid vectors, as well as pET-19b in our later experiments. The Duet vectors carry two expression units that are controlled by a T7-lac promoter and terminator for protein expression. The Duet plasmids, pETDuet-1 and pPRSFDuet-1, both possess an ampicillin and kanamycin resistance gene, respectively. Meanwhile pET-19 confers ampicillin resistance (Figure 2). These specific vectors were chosen so that the prefoldin-catcher and enzyme-tag DNA constructs could be cloned into the same cell, allowing the entire scaffold to be expressed simultaneously. Furthermore, pETDuet-1 and pRSFDuet-1 plasmids possess different origins of replication,  which enables in vivo production of the scaffold-enzyme complex.</p>
  
<p>To produce, purify and characterise prefoldin scaffold proteins and proteins that attach to our scaffold for further experiments on the stability, assembly and efficacy of our enzyme scaffold.</p>
+
<div class=image-box>
 +
<img src=https://static.igem.org/mediawiki/2018/5/59/T--UNSW_Australia--cloning-img2-plasmids.png>
 +
</div>
 +
<p class=figure-legend><b>Figure 2:</b> Plasmid maps depicting pETDuet-1, pRSFDuet-1 and pET19-b. Resistance genes are shown in red. Images were generated by Benchling.</p>
  
<h2>Methods</h2>
+
<p>We successfully cloned 8 DNA constructs were successfully cloned into pET-Duet1 and pRSF-Duet1 plasmids. However, we experienced difficulties expressing protein from these plasmids. The constructs were then redesigned to omit the iGEM prefix and suffix sequences and the Gibson overhangs were modified. This enabled the cloning of 6 modified constructs into the pET-19b vector for protein expression and purification. We opted to switch to this vector because it was currently being used successfully by a collaborator for protein expression.</p>
  
<p><em>Escherichia coli</em> T7 Express cells (NEB) were heat shock transformed with a plasmid containing the gene of interest.  The bacteria were grown in Luria broth (LB) media with ampicillin at 37<sup>o</sup>C at 200 rpm, induced with isopropyl &beta;-D-1-thiogalactopyranoside (IPTG) at 1 mM when the OD<sub>600</sub> of the media reached 0.6 and then grown overnight at room temperature. The cell pellet was collected by centrifugation and lysed by sonication. The cell lysate was then centrifuged to remove cell debris, and only the soluble fraction was collected. The soluble fraction was loaded onto a HisTrap HP 1 mL column (GE Healthcare) and purified using immobilised metal affinity chromatography (IMAC). Elutions were analysed with SDS-PAGE and buffer exchanged into PBS pH 8 using Pierce Protein Concentrators PES, 10K MWCO, 2-6 mL (Thermo Scientific) or by dialysis. The concentration of buffer exchanged proteins were then quantified by the bicinchoninic acid (BCA) assay.</p>
+
<p>Circular pETDuet-1 and pRSFDuet-1 and linearised pET-19b were kindly supplied by Dr Dominic Glover.</p>
  
<div class="image-box">
+
<p class=table-legend><b>Table 1:</b> The constructs to be cloned into each vector.</p>
<img height="600px" src=https://static.igem.org/mediawiki/2018/8/8d/T--UNSW_Australia--protein1.png>
+
 
 +
<div class="flex-center">
 +
<table class="lab-table">
 +
<tr>
 +
<th>pETDuet-1</th>
 +
<th>pRSFDuet-1</th>
 +
<th>pET-19b</th>
 +
</tr>
 +
<tr>
 +
<td>aPFD</td>
 +
<td>IaaH-SpyTag</td>
 +
<td>aPFD</td>
 +
</tr>
 +
<tr>
 +
<td>bPFD</td>
 +
<td>IaaM-SnoopTag</td>
 +
<td>bPFD</td>
 +
</tr>
 +
<tr>
 +
<td>aPFD-SpyCatcher</td>
 +
<td>mCerulean3-SnoopTag</td>
 +
<td>IaaH-SpyTag</td>
 +
</tr>
 +
<tr>
 +
<td>bPFD-SnoopCatcher</td>
 +
<td>mVenus-SpyTag</td>
 +
<td>IaaM-SnoopTag</td>
 +
</tr>
 +
<tr>
 +
<td></td>
 +
<td></td>
 +
<td>IaaH</td>
 +
</tr>
 +
<tr>
 +
<td></td>
 +
<td></td>
 +
<td>IaaM</td>
 +
</tr>
 +
</table>
 +
</div>
 +
 
 +
 
 +
<h2>Aim</h2>
 +
<p>To clone genes encoding the parts required to form our scaffold into appropriate plasmid vectors by Gibson assembly. In particular:</p>
 +
<ol>
 +
<li>Cloning original DNA constructs into pETDuet-1 and pRSFDuet-1</li>
 +
<li>Cloning modified DNA constructs into pET-19b</li>
 +
</ol>
 +
 
 +
<h2>DNA design</h2>
 +
 
 +
 
 +
<p>We designed 8 gBlocks for cloning by Gibson assembly into the first multiple cloning sites of pETDuet-1 and pRSFDuet-1 (Figure 3). All sequences included an N-terminal 6xHis-Tag immediately after the start codon to enable purification using Nickel affinity, followed by a Glycine-Serine-Glycine (GSG) linker. The GSG linker provides flexibility as the side chains of glycine and serine are small, and can allow the 6xHis-Tag to move freely in solution. The amino acid sequences for each protein were obtained. For prefoldin-catcher fusion proteins, a GSGSGSGSG linker and SpyCatcher or SnoopCatcher followed the alpha or beta prefoldin sequence, yielding aPFD-SpyCatcher and bPFD-SnoopCatcher. For enzyme-tag fusion proteins, a GSG linker and SpyTag or SnoopTag followed the enzyme sequence, yielding IaaH-SpyTag and IaaM-SnoopTag. The longer 9 amino acid linker was used for SpyCatcher and SnoopCatcher fusion proteins as the catcher domains are large and may sterically interfere with protein folding if the C-terminus of the original protein is not solvent accessible. An increased linker length on the aPFD-SpyCatcher and bPFD-SnoopCatcher fusions may also enable the scaffold to accommodate the attachment of large enzymes. The DNA sequences were codon optimised for <i>E. coli</i> with manual removal of EcoRI, XbaI, SpeI and PstI restriction sites for RFC10 compatibility. The BioBrick prefix and suffix were then placed on the 5’ and 3’ ends of each sequence. Finally, the DNA sequences were flanked with 25 bp Gibson overhangs identical to the 25 bp immediately upstream and downstream of the insertion site into pETDuet-1 and pRSFDuet-1.</p>
 +
 
 +
<div class=image-box>
 +
<img src=https://static.igem.org/mediawiki/2018/8/83/T--UNSW_Australia--cloning-img3-gblock.png>
 +
</div>
 +
 
 +
<p class=figure-legend><b>Figure 3:</b> DNA constructs designed by Brian Ee. Images were generated by Benchling.</p>
 +
 
 +
<h2>Method</h2>
 +
<p>pETDuet-1 and pRSFDuet-1 plasmids were linearised with PCR (NEB), removing the first multiple cloning site. Enzymes were removed by PCR clean up (Sigma Aldrich). A DpnI digest was performed to remove template circular plasmid and the product was then cleaned up again. Linearity was confirmed by agarose gel electrophoresis. Gibson assembly was used to construct plasmids by combining linearised plasmids with gBlocks ordered from IDT. The Gibson assembly product was transformed via heat shock into <i>E. coli</I> DH5-alpha (NEB) cells before plating onto antibiotic-selective Luria broth agar plates. A colony PCR was performed and analysed by gel electrophoresis in order to identify single colonies that had been successfully transformed with Gibson assembly products. Successful transformants were grown in 10 mL of LB with appropriate antibiotic and plasmids were prepared using QIAprep Spin Miniprep Kit (Qiagen). To confirm the insertion of our DNA construct in the miniprepped plasmids, we performed a diagnostic digest. Plasmids were digested with restriction enzymes that excised the insert and analysed with agarose gel electrophoresis. Sanger sequencing was also performed (Ramaciotti Centre for Genomics) to verify gene sequences.</p>
 +
<p>For the transfer of inserts into pET-19b, primers were designed to PCR amplify the inserts whilst also removing the BioBrick prefix and suffix, and adding Gibson overhangs appropriate for insertion into the multiple cloning site of pET-19b. Gibson assembly was then performed as previously described with PCR linearised pET-19b.</p>
 +
 
 +
<p>For more detail on our cloning protocols, visit our <a href=”https://2018.igem.org/Team:UNSW_Australia/Experiments”>experiment page</a></p>
 +
 
 +
<div class=image-box>
 +
<img src=https://static.igem.org/mediawiki/2018/b/b0/T--UNSW_Australia--cloning-img4-cloningflowchart.png>
 
</div>
 
</div>
<p class="figure-legend"><b>Figure 1:</b> Summary of methods for protein expression and purification.</p>
+
<p class=figure-legend><b>Figure 4:</b> Flowchart depicting the overall cloning process undertaken.</p>
 +
<div id=results>
  
  
<p>Detailed protocols can be found <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Experiments">on our experiments page</a>.</p>
 
  
 
<h2>Results</h2>
 
<h2>Results</h2>
 +
<h3>Cloning original DNA constructs into pETDuet-1 and pRSFDuet-1</h3>
  
<p>Following the successful subcloning of inserts from pET-Duet1, pRSF-Duet1 or pSB1C3 into pET19b, 9 proteins were successfully purified and analysed by SDS-PAGE. In addition, 3 parts from the Registry of Standard Biological Parts (BBa_K1789000, BBa_K1789001 and BBa_K515100) were expressed, but were not purified. These parts contained the enzymes IaaM and IaaH without His-tags.</p>
+
<p>All 8 original DNA constructs (Figure 3) were successfully cloned into pET-Duet1 and pRSF-Duet1 plasmid vectors. The presence of each inserted gene within its plasmid was confirmed by performing a diagnostic digest (Figure 5), and the recombinant plasmids were also each sequence verified. These plasmids were used for our initial attempts at protein expression and purification.</p>
  
 
<div class=image-box>
 
<div class=image-box>
<img height="600px" src=https://static.igem.org/mediawiki/2018/2/2e/T--UNSW_Australia--proteingels.jpeg>
+
<img src=https://static.igem.org/mediawiki/2018/c/c2/T--UNSW_Australia--cloning-img5-gel1.png>
 
</div>
 
</div>
<p class="figure-legend"><b>Figure 2:</b> SDS-PAGE analysis of IMAC purifications of His-tagged proteins. <b>A:</b> mVenus (MW: 27 kDa). <b>B:</b> mCerulean3 (MW: 27 kDa). <b>C:</b> gPFD-SpyC (MW: 31 kDa). <b>D:</b> SpyC-gPFD-SpyC (MW: 46 kDa). <b>E:</b> aPFD (MW: 17 kDa) (left) and bPFD (MW: 15 kDa) (right). <b>F:</b> bPFD-SnoopC (MW: 28 kDa). <b>G:</b> IaaH (without His-tag, unsuccessful purification) (MW: 49 kDa) (left) and IaaH-SpyT (MW: 53 kDa) (right). <b>H:</b> aPFD-SpyC (MW: 30 kDa). SeeBlue Plus 2 Pre-stained Protein Standard (Invitrogen) was used as the molecular weight standard for all SDS-PAGE analysis. Lanes are labelled as cell lysate (L), flow through (FT), wash (W) and elutions (E1, E2, E3, E4, E5).</p>
+
<p class=figure-legend><b>Figure 5:</b> Diagnostic digest of recombinant pETDuet-1 and pRSFDuet-1 plasmids. Gel demonstrates the construction of plasmids containing the desired DNA inserts. Plasmids were restriction enzyme digested with EcoRI and PstI and analysed by agarose gel electrophoresis. The red boxes indicate the presence of the insert at the expected size in comparison to the 2-Log DNA marker.</p>
  
<h2>Discussion</h2>
+
<h3>Cloning modified DNA constructs into pET-19b</h3>
  
<p>Initial attempts at protein expression were unsuccessful using pET-Duet-1 and pRSF-Duet-1 plasmids. After cloning our desired inserts into these plasmids, we attempted to express these proteins, but no expression could be detected by SDS-PAGE or Western Blot. Both <em>E. coli</em> T7 Express and Lemo21(DE3) cell lines were used for expression, and tested with 0.1 mM, 0.4 mM and 1 mM IPTG inductions. We hypothesised that the design of our plasmids inhibited expression, as the BioBrick prefix was placed between the ribosome binding site and the start codon of our coding sequence. We decided to subclone our inserts into pET-19b and remove the BioBrick prefix and suffix before retrying protein expression and purification.</p>
+
<p>The eight recombinant pETDuet-1 and pRSFDuet-1 recombinant plasmids were unable to be expressed, so six DNA constructs were modified and cloned into the pET-19b vector instead. The presence of aPFD, bPFD and IaaH-SpyTag in pET-19b was confirmed by a diagnostic digest (Figure 6). Moreover, Sanger sequencing verified successful insertion of these genes as well as aPFD-SpyCatcher, bPFD-SnoopCatcher and IaaM-SnoopTag. Therefore, the following modified constructs were successfully cloned into pET-19b:</p>
  
<p>Despite these difficulties, 9 proteins were successfully purified, and 3 protein constructs from the iGEM registry were expressed. The following constructs were successfully purified:</p>
 
 
<ul>
 
<ul>
<li>His-aPFD & His-bPFD – for assembly of the aPFD/bPFD hexamer, and as a negative control for the effect of scaffolding on enzyme activity.</li>
+
<li>aPFD</li>
<li>His-aPFD-SpyCatcher & His-bPFD-SnoopCatcher – the scaffold components of our complex that can covalently attach Spy-Tagged and Snoop-Tagged enzymes</li>
+
<li>bPFD</li>
<li>His-mVenus & His-mCerulean3 – for FRET experiments to investigate the distance between proteins attached to the scaffold.</li>
+
<li>aPFD-SpyCatcher</li>
<li>His-gPFD-SpyCatcher & His-SpyCatcher-gPFD-SpyCatcher – filamentous variants of prefoldin fused with SpyCatchers, to test SpyTag/SpyCatcher reactions and to determine if gPFD can form filaments with enzymes attached to its N- and/or C- terminus.</li>
+
<li>bPFD-SnoopCatcher</li>
<li>His-IaaH-SpyTag – the second enzyme of our reaction pathway, indole-3-acetamide hydrolase, fused with a SpyTag for attachment to His-aPFD-SpyCatcher.</li>
+
<li>IaaH-SpyTag</li>
 +
<li>IaaM-SnoopTag</li>
 
</ul>
 
</ul>
<p>The following BioBricks were expressed for comparison with the tagged versions of the enzymes:</p>
+
 
 +
<p>In addition, the following BioBricks were obtained from the iGEM distribution plates and cloned into pET-19b for creation of our <a href=https://2018.igem.org/Team:UNSW_Australia/Improve target=_blank>Improved Part</a>.<p>
 
<ul>
 
<ul>
<li>BBa_K1789000 – IaaM</li>
+
<li>IaaM <a target=_blank href=http://parts.igem.org/Part:BBa_K1789000>(BBa_K1789000)</a></li>
<li>BBa_K1789001 – IaaH</li>
+
<li>IaaH <a target=_blank href=http://parts.igem.org/Part:BBa_K1789001>(BBa_K1789001)</a></li>
<li>BBa_K515100 – IaaM and IaaH under a Pveg2 promoter</li>
+
 
</ul>
 
</ul>
 +
</div>
  
<p>Following protein purification, we encountered issues with solubility for some proteins. This was likely due to non-optimal buffer conditions or high concentrations of protein. Further experimentation and optimisation is required to identify the range of conditions in which these proteins are stable and able to assemble. In the future, we would like to express and purify all of our successfully cloned constructs, including the first enzyme of our reaction pathway, tryptophan-2-monooxygenase (IaaM), fused to the SnoopTag, fluorescent proteins with appropriate tags for FRET experiments and enzymes from other pathways fused with SpyTag and SnoopTag. In addition, we would like to increase the purity of our purifications and attempt larger scale protein expressions. These provide materials that are fundamental for the characterisation of the assembly of our scaffold, the distance between the attachment site, the rate of indole acetic acid production and the modularity of our system.</p>
+
<div class=image-box>
 +
<img src=https://static.igem.org/mediawiki/2018/c/cc/T--UNSW_Australia--cloning-img6-gel2.png>
 +
</div>
 +
<p class=figure-legend><b>Figure 6:</b> Diagnostic digest of recombinant pET-19b plasmids. Gel demonstrates the construction of recombinant pET-19b plasmids containing aPFD, bPFD and IaaH-SpyT. Plasmids were restriction enzyme digested with EcoRI and XbaI and analysed by agarose gel electrophoresis. The red boxes indicate the presence of the insert at the expected size in comparison to the 2-Log DNA marker. </p>
  
  
<div id="references">
+
<h2>Discussion</h2>
 +
<p>The initial aim of cloning all 8 DNA constructs into pETDuet-1 and pRSFDuet-1 plasmid vectors was successful. We originally opted for these two Duet vectors as it would enable us to co-transform and express two target genes into MCS1 and MCS2 if time permitted. This could have streamlined the process for hetero-hexameric complex assembly, increasing the efficiency of future cloning experiments.
 +
However, we were unable to express our target proteins when the recombinant plasmids were transformed into expression strains for protein purification experiments. We hypothesised that this was due to the 20 bp long BioBrick prefix situated between the ribosomal binding site (RBS) and the start codon of our construct. This displaces the RBS away from the start of transcription, which is the likely cause for the difficulties experienced with protein expression. Translation studies in E. coli have demonstrated that the optimal spacing between the RBS and the start codon in E. coli ranges from 7-9 nucleotides<sup><a href=#references>4</a></sup>.</p>
 +
 
 +
<p>We decided to clone the DNA constructs into the pET-19b vector as it was used successfully in previous cloning experiments for our collaborators. Dr Dominic Glover kindly supplied us with linearised pET-19b plasmids for our experiments, and we were successful in cloning 6 of our 8 DNA constructs into these vectors. Unfortunately due to time restrictions, we were unable to clone all 8 DNA constructs in pET-19b. In the future, we hope to clone more parts into pET-19b which would enable us to perform more assembly tests and ultimately piece together and characterise a complete and functional scaffold.</p>
 +
 
 +
<div id=references>
 
<h2>References</h2>
 
<h2>References</h2>
 
<ol>
 
<ol>
<li>Siegert, R., Leroux, M. R., Scheufler, C., Hartl, F. U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. <em>Cell</em> <b>103</b>, 621–32 (2000).</li>
+
<li>Gibson, D. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. <i>Nature Methods</i> 6, 343-345 (2009).</li>
<li>Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. <em>Proc. Natl. Acad. Sci.</em> <b>109</b>, E690–E697 (2012).</li>
+
<li>Siegert, R., Leroux, M., Scheufler, C., Hartl, F. & Moarefi, I. Structure of the Molecular Chaperone Prefoldin. <i>Cell</i> 103, 621-632 (2000).</li>
<li>Veggiani, G. et al. Programmable polyproteams built using twin peptide superglues. <em>Proc. Natl. Acad. Sci.</em> <b>113</b>, 1202–1207 (2016).</li>
+
<li>Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. <i>Proceedings of the National Academy of Sciences</i> 109, E690-E697 (2012).</li>
<li>Gaweska, H. M., Taylor, A. B., Hart, P. J. & Fitzpatrick, P. F. Structure of the flavoprotein tryptophan 2-monooxygenase, a key enzyme in the formation of galls in plants. <em>Biochemistry</em> <b>52</b>, 2620–6 (2013).</li>
+
<li>Vellanoweth, R. & Rabinowitz, J. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and <i>Escherichia coli</i> in vivo. <i>Molecular Microbiology</i> 6, 1105-1114 (1992).</li>
<li>Mishra, P., Kaur, S., Sharma, A. N. & Jolly, R. S. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid. <em>PLoS One</em> <b>11</b>, e0159009 (2016).</li>
+
<li>Markwardt, M. L. et al. An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching. <em>PLoS One</em> <b>6</b>, e17896 (2011).</li>
+
<li>Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D. Genetic Approach to Facilitate Purification of Recombinant Proteins with a Novel Metal Chelate Adsorbent. <em>Nat. Biotechnol.</em> <b>6</b>, 1321–1325 (1988).</li>
+
 
</ol>
 
</ol>
 
</div>
 
</div>
 +
 
</div>
 
</div>
  

Revision as of 12:12, 17 October 2018

Abstract

To express the various components of our scaffold for protein conjugation and assembly experiments, our DNA constructs were cloned into appropriate plasmid vectors. We used Gibson assembly cloning to assemble the DNA inserts with the vectors in one simple isothermal reaction1. The products of the reaction were transformed into competent DH5-alpha Escherichia coli cells and colonies were screened for recombinant plasmids. Plasmids containing the desired DNA inserts were transformed into T7 cells for protein expression and purification experiments. In total, eight constructs were successfully cloned into corresponding pET-Duet1 and pRSF-Duet1 plasmids, while 6 constructs were cloned into pET-19b plasmids.

Introduction

The components of the prefoldin scaffold and the associated attached enzymes were to be expressed for enzymatic and self-assembly experiments. To produce the proteins required for these analytical experiments, our gene of interests were to be cloned into an appropriate plasmid vector for expression and purification in E. coli cells. This page describes the methods undertaken to produce recombinant plasmids containing our DNA constructs for protein expression. Eight codon optimised DNA constructs were designed and synthesised in the form of g-Blocks from Integrated DNA Technologies (IDT).

The hetero-hexameric structure of our scaffold is composed of two alpha prefoldin (aPFD) subunits and four beta prefoldin (bPFD) subunits covalently attached to enzymes2. To produce a functional and complete scaffold, genes encoding the proteins which form the scaffold must first be cloned into an appropriate vector. Plasmids containing aPFD and bPFD were constructed. In addition, aPFD-SpyCatcher and bPFD-SnoopCatcher fusion constructs were created for comparative enzyme activity experiments.

SpyTags3and SnoopTags3 were fused to indole-3-acetamide hydrolase (IaaH-SpyTag) and tryptophan 2-monoxygenase (IaaM-SnoopTag) and cloned into appropriate plasmid vectors. Expression of these plasmids would enable protein conjugation experiments with the prefoldin-catcher protein constructs. Fluorescent mCerulean3-SnoopTag and mVenus-SpyTag gBlocks were also cloned into plasmids for Försters Resonance Energy Transfer (FRET) experiments. 6x His-Tags were also attached to the start of each DNA construct via a GSG linker, which would allow the recovery of purified protein.

All original gBlock designs contain the BioBrick prefix and suffix sequences which were flanked by 20-25 bp long 5’ and 3’ Gibson overhangs. Cloning the BioBrick restriction sites into the DNA construct allowed excision of the insert out from the plasmid vector for diagnostic purposes and for transfer of the inserts into the pSB1C3 BioBrick backbone. Gibson Assembly cloning techniques were used to clone the DNA constructs into the plasmids. 5’ exonuclease activity generates complementary overhang sequences on the insert and vector, and polymerase fills in the gaps of the single strand regions. DNA ligase seals the nicks of the gaps, allowing the two fragments to covalently link together (Figure 1)1.

Figure 1: Diagram illustrating the process of Gibson assembly sequence insertion into the plasmid vector1.

Our DNA constructs were cloned into pETDuet-1 and pRSFDuet-1 plasmid vectors, as well as pET-19b in our later experiments. The Duet vectors carry two expression units that are controlled by a T7-lac promoter and terminator for protein expression. The Duet plasmids, pETDuet-1 and pPRSFDuet-1, both possess an ampicillin and kanamycin resistance gene, respectively. Meanwhile pET-19 confers ampicillin resistance (Figure 2). These specific vectors were chosen so that the prefoldin-catcher and enzyme-tag DNA constructs could be cloned into the same cell, allowing the entire scaffold to be expressed simultaneously. Furthermore, pETDuet-1 and pRSFDuet-1 plasmids possess different origins of replication, which enables in vivo production of the scaffold-enzyme complex.

Figure 2: Plasmid maps depicting pETDuet-1, pRSFDuet-1 and pET19-b. Resistance genes are shown in red. Images were generated by Benchling.

We successfully cloned 8 DNA constructs were successfully cloned into pET-Duet1 and pRSF-Duet1 plasmids. However, we experienced difficulties expressing protein from these plasmids. The constructs were then redesigned to omit the iGEM prefix and suffix sequences and the Gibson overhangs were modified. This enabled the cloning of 6 modified constructs into the pET-19b vector for protein expression and purification. We opted to switch to this vector because it was currently being used successfully by a collaborator for protein expression.

Circular pETDuet-1 and pRSFDuet-1 and linearised pET-19b were kindly supplied by Dr Dominic Glover.

Table 1: The constructs to be cloned into each vector.

pETDuet-1 pRSFDuet-1 pET-19b
aPFD IaaH-SpyTag aPFD
bPFD IaaM-SnoopTag bPFD
aPFD-SpyCatcher mCerulean3-SnoopTag IaaH-SpyTag
bPFD-SnoopCatcher mVenus-SpyTag IaaM-SnoopTag
IaaH
IaaM

Aim

To clone genes encoding the parts required to form our scaffold into appropriate plasmid vectors by Gibson assembly. In particular:

  1. Cloning original DNA constructs into pETDuet-1 and pRSFDuet-1
  2. Cloning modified DNA constructs into pET-19b

DNA design

We designed 8 gBlocks for cloning by Gibson assembly into the first multiple cloning sites of pETDuet-1 and pRSFDuet-1 (Figure 3). All sequences included an N-terminal 6xHis-Tag immediately after the start codon to enable purification using Nickel affinity, followed by a Glycine-Serine-Glycine (GSG) linker. The GSG linker provides flexibility as the side chains of glycine and serine are small, and can allow the 6xHis-Tag to move freely in solution. The amino acid sequences for each protein were obtained. For prefoldin-catcher fusion proteins, a GSGSGSGSG linker and SpyCatcher or SnoopCatcher followed the alpha or beta prefoldin sequence, yielding aPFD-SpyCatcher and bPFD-SnoopCatcher. For enzyme-tag fusion proteins, a GSG linker and SpyTag or SnoopTag followed the enzyme sequence, yielding IaaH-SpyTag and IaaM-SnoopTag. The longer 9 amino acid linker was used for SpyCatcher and SnoopCatcher fusion proteins as the catcher domains are large and may sterically interfere with protein folding if the C-terminus of the original protein is not solvent accessible. An increased linker length on the aPFD-SpyCatcher and bPFD-SnoopCatcher fusions may also enable the scaffold to accommodate the attachment of large enzymes. The DNA sequences were codon optimised for E. coli with manual removal of EcoRI, XbaI, SpeI and PstI restriction sites for RFC10 compatibility. The BioBrick prefix and suffix were then placed on the 5’ and 3’ ends of each sequence. Finally, the DNA sequences were flanked with 25 bp Gibson overhangs identical to the 25 bp immediately upstream and downstream of the insertion site into pETDuet-1 and pRSFDuet-1.

Figure 3: DNA constructs designed by Brian Ee. Images were generated by Benchling.

Method

pETDuet-1 and pRSFDuet-1 plasmids were linearised with PCR (NEB), removing the first multiple cloning site. Enzymes were removed by PCR clean up (Sigma Aldrich). A DpnI digest was performed to remove template circular plasmid and the product was then cleaned up again. Linearity was confirmed by agarose gel electrophoresis. Gibson assembly was used to construct plasmids by combining linearised plasmids with gBlocks ordered from IDT. The Gibson assembly product was transformed via heat shock into E. coli DH5-alpha (NEB) cells before plating onto antibiotic-selective Luria broth agar plates. A colony PCR was performed and analysed by gel electrophoresis in order to identify single colonies that had been successfully transformed with Gibson assembly products. Successful transformants were grown in 10 mL of LB with appropriate antibiotic and plasmids were prepared using QIAprep Spin Miniprep Kit (Qiagen). To confirm the insertion of our DNA construct in the miniprepped plasmids, we performed a diagnostic digest. Plasmids were digested with restriction enzymes that excised the insert and analysed with agarose gel electrophoresis. Sanger sequencing was also performed (Ramaciotti Centre for Genomics) to verify gene sequences.

For the transfer of inserts into pET-19b, primers were designed to PCR amplify the inserts whilst also removing the BioBrick prefix and suffix, and adding Gibson overhangs appropriate for insertion into the multiple cloning site of pET-19b. Gibson assembly was then performed as previously described with PCR linearised pET-19b.

For more detail on our cloning protocols, visit our experiment page

Figure 4: Flowchart depicting the overall cloning process undertaken.

Results

Cloning original DNA constructs into pETDuet-1 and pRSFDuet-1

All 8 original DNA constructs (Figure 3) were successfully cloned into pET-Duet1 and pRSF-Duet1 plasmid vectors. The presence of each inserted gene within its plasmid was confirmed by performing a diagnostic digest (Figure 5), and the recombinant plasmids were also each sequence verified. These plasmids were used for our initial attempts at protein expression and purification.

Figure 5: Diagnostic digest of recombinant pETDuet-1 and pRSFDuet-1 plasmids. Gel demonstrates the construction of plasmids containing the desired DNA inserts. Plasmids were restriction enzyme digested with EcoRI and PstI and analysed by agarose gel electrophoresis. The red boxes indicate the presence of the insert at the expected size in comparison to the 2-Log DNA marker.

Cloning modified DNA constructs into pET-19b

The eight recombinant pETDuet-1 and pRSFDuet-1 recombinant plasmids were unable to be expressed, so six DNA constructs were modified and cloned into the pET-19b vector instead. The presence of aPFD, bPFD and IaaH-SpyTag in pET-19b was confirmed by a diagnostic digest (Figure 6). Moreover, Sanger sequencing verified successful insertion of these genes as well as aPFD-SpyCatcher, bPFD-SnoopCatcher and IaaM-SnoopTag. Therefore, the following modified constructs were successfully cloned into pET-19b:

  • aPFD
  • bPFD
  • aPFD-SpyCatcher
  • bPFD-SnoopCatcher
  • IaaH-SpyTag
  • IaaM-SnoopTag

In addition, the following BioBricks were obtained from the iGEM distribution plates and cloned into pET-19b for creation of our Improved Part.

Figure 6: Diagnostic digest of recombinant pET-19b plasmids. Gel demonstrates the construction of recombinant pET-19b plasmids containing aPFD, bPFD and IaaH-SpyT. Plasmids were restriction enzyme digested with EcoRI and XbaI and analysed by agarose gel electrophoresis. The red boxes indicate the presence of the insert at the expected size in comparison to the 2-Log DNA marker.

Discussion

The initial aim of cloning all 8 DNA constructs into pETDuet-1 and pRSFDuet-1 plasmid vectors was successful. We originally opted for these two Duet vectors as it would enable us to co-transform and express two target genes into MCS1 and MCS2 if time permitted. This could have streamlined the process for hetero-hexameric complex assembly, increasing the efficiency of future cloning experiments. However, we were unable to express our target proteins when the recombinant plasmids were transformed into expression strains for protein purification experiments. We hypothesised that this was due to the 20 bp long BioBrick prefix situated between the ribosomal binding site (RBS) and the start codon of our construct. This displaces the RBS away from the start of transcription, which is the likely cause for the difficulties experienced with protein expression. Translation studies in E. coli have demonstrated that the optimal spacing between the RBS and the start codon in E. coli ranges from 7-9 nucleotides4.

We decided to clone the DNA constructs into the pET-19b vector as it was used successfully in previous cloning experiments for our collaborators. Dr Dominic Glover kindly supplied us with linearised pET-19b plasmids for our experiments, and we were successful in cloning 6 of our 8 DNA constructs into these vectors. Unfortunately due to time restrictions, we were unable to clone all 8 DNA constructs in pET-19b. In the future, we hope to clone more parts into pET-19b which would enable us to perform more assembly tests and ultimately piece together and characterise a complete and functional scaffold.

References

  1. Gibson, D. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343-345 (2009).
  2. Siegert, R., Leroux, M., Scheufler, C., Hartl, F. & Moarefi, I. Structure of the Molecular Chaperone Prefoldin. Cell 103, 621-632 (2000).
  3. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Academy of Sciences 109, E690-E697 (2012).
  4. Vellanoweth, R. & Rabinowitz, J. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Molecular Microbiology 6, 1105-1114 (1992).