Line 1: | Line 1: | ||
{{ECUST/Header}} | {{ECUST/Header}} | ||
<html> | <html> | ||
+ | <head> | ||
+ | |||
+ | <script type="text/x-mathjax-config"> | ||
+ | MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); | ||
+ | </script> | ||
+ | <script type="text/javascript" async | ||
+ | src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"> | ||
+ | </script> | ||
+ | |||
+ | </head> | ||
+ | <body> | ||
<div class="stars"></div> | <div class="stars"></div> | ||
<div id="pagebanner" style="background-image:url(https://static.igem.org/mediawiki/2018/1/11/T--ECUST--model.png);"> | <div id="pagebanner" style="background-image:url(https://static.igem.org/mediawiki/2018/1/11/T--ECUST--model.png);"> | ||
Line 42: | Line 53: | ||
<h2>4.1 HSL Transfer</h2> | <h2>4.1 HSL Transfer</h2> | ||
<p> HSL is produced by iron bacterias and realeased into the water environment. So the first step of our sensing is HSL transfering into our engineered E.coli from the water. And a passive transusion model is used for this process that the transfer rate of HSL can be described as this:</p> | <p> HSL is produced by iron bacterias and realeased into the water environment. So the first step of our sensing is HSL transfering into our engineered E.coli from the water. And a passive transusion model is used for this process that the transfer rate of HSL can be described as this:</p> | ||
− | <p> • K<sub>HSL,W-C</sub> : transfer coefficient through the membrane ( | + | <p>$$2vdiffuse,HSL,W-C = KHSL,W-C ([HSL]W − [HSL]C )$$</p> |
+ | <p> • K<sub>HSL,W-C</sub> : transfer coefficient through the membrane (<sup>−1</sup>)</p> | ||
<p> • We can predict hao long our engineered bacteria would take to remove the biofilm and rust.</p> | <p> • We can predict hao long our engineered bacteria would take to remove the biofilm and rust.</p> | ||
Line 78: | Line 90: | ||
<h3>4.3.4 Degradation</h3> | <h3>4.3.4 Degradation</h3> | ||
<p> Some of the DspB protein and mRNA are degraded. A degradation constant is used to model the degradation velocity.</p> | <p> Some of the DspB protein and mRNA are degraded. A degradation constant is used to model the degradation velocity.</p> | ||
− | <p> • K<sub>deg,DspB</sub>: DspB degradation constant ( | + | <p> • K<sub>deg,DspB</sub>: DspB degradation constant (s<sup>−1</sup>)</p> |
− | <p> • K<sub>deg,DspB mRNA</sub>: DspB mRNA degradation constant ( | + | <p> • K<sub>deg,DspB mRNA</sub>: DspB mRNA degradation constant (s<sup>−1</sup>)</p> |
<h3>4.3.5 DspB Transfer</h3> | <h3>4.3.5 DspB Transfer</h3> | ||
<p> DspB protein needs to be transferred to the water environment to function. This process is taken into account through a passive transusion model.</p> | <p> DspB protein needs to be transferred to the water environment to function. This process is taken into account through a passive transusion model.</p> | ||
− | <p> • K<sub>DspB,C-W</sub> : transfer coefficient through the membrane ( | + | <p> • K<sub>DspB,C-W</sub> : transfer coefficient through the membrane (s<sup>−1</sup>)</p> |
Line 89: | Line 101: | ||
<h2>4.4 Biofilm Removel</h2> | <h2>4.4 Biofilm Removel</h2> | ||
<p> The biofilm is removed by the DspB and the process is modeled assuming a Michaelis-Menten kinetics.</p> | <p> The biofilm is removed by the DspB and the process is modeled assuming a Michaelis-Menten kinetics.</p> | ||
− | <p> • | + | <p> • k<sub>cat,DspB</sub> : catalytic constant of the DspB enzyme (s<sup>−1</sup>)</p> |
− | <p> • | + | <p> • K<sub>M,D</sub> : Michaelis constant of the DspB enzyme (mol/L)</p> |
Line 97: | Line 109: | ||
<h3>4.5.1 EntE Gene Activation</h3> | <h3>4.5.1 EntE Gene Activation</h3> | ||
<p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | <p> This process is modeled using a Michaelian formalism depending on its activator (AfeR-HSL complexation) concentration. The promoter strength is also taken into account.</p> | ||
− | <p> • EntE DNA,0/cell : total number of EntE DNA per cell</p> | + | <p> • EntE <sub>DNA,0/cell</sub> : total number of EntE DNA per cell</p> |
− | <p> • EntE DNA/cell : number of activated EntE DNA per cell</p> | + | <p> • EntE <sub>DNA/cell</sub> : number of activated EntE DNA per cell</p> |
− | <p> • K a, AfeR-HSL : activation constant of the AfeR-HSL complexation (mol/L)</p> | + | <p> • K a, <sub>AfeR-HSL</sub> : activation constant of the AfeR-HSL complexation (mol/L)</p> |
− | <p> • k p, afeR : afeR promoter influence</p> | + | <p> • k p, <sub>afeR</sub> : afeR promoter influence</p> |
<h3>4.5.2 EntE Transcription</h3> | <h3>4.5.2 EntE Transcription</h3> | ||
<p> The EntE transcription depends on the transcription rate of the strain and the length of the EntE gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | <p> The EntE transcription depends on the transcription rate of the strain and the length of the EntE gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | ||
− | <p> • | + | <p> • EntE <sub>DNA,/cell</sub> : number of EntE gene per cell</p> |
− | <p> • | + | <p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> |
<p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | <p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | ||
<p> • DNA length (EntE): number of nucleotides on the EntE gene</p> | <p> • DNA length (EntE): number of nucleotides on the EntE gene</p> | ||
− | <p> • | + | <p> • V<sub>intracell</sub> : volume of a bacterial cell (L)</p> |
− | <p> For the convenience of mathematical operation, we merged the | + | <p> For the convenience of mathematical operation, we merged the k<sub>transcript</sub>、RNA polymerase/gene and V <sub>intracell</sub> to a constant.</p> |
+ | <h3>4.5.3 EntE Translation</h3> | ||
+ | <p> The EntE translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | ||
+ | <p> • k<sub>translation</sub> : E.coli translation rate (nucleotides/s)</p> | ||
+ | <p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | ||
+ | <p> • RNA length (EntE): number of nucleotides on the EntE mRNA</p> | ||
+ | <p> • [EntE mRNA] : EntE mRNA concentration in one E.coli cell</p> | ||
+ | <p> For the convenience of mathematical operation, we merge the k<sub>translation</sub> and Ribosomes/RNA and to a constant.</p> | ||
+ | <h3>4.5.4 Degradation</h3> | ||
+ | <p> Some of the EntE protein and mRNA are degraded. A degradation constant is used to model the degradation velocity.</p> | ||
+ | <p> • K<sub>deg,EntE</sub>: EntE degradation constant (s<sup>−1</sup>)</p> | ||
+ | <p> • K<sub>deg,EntE mRNA</sub>: EntE mRNA degradation constant (s<sup>−1</sup>)</p> | ||
+ | |||
+ | |||
+ | |||
+ | <h2>4.6 Enterobactin Production</h2> | ||
+ | <h3>4.6.1 Enterobactin Production</h3> | ||
+ | <p> Enterobactin is produced by E.coli through the reaction catalyzed by EntE and is modeled assuming a Michaelis-Menten kinetics.</p> | ||
+ | <p> • [EntE]<sub>C</sub> : EntE enzyme concentration in one E.coli cell (mol/L)</p> | ||
+ | <p> • k <sub>cat,EntE</sub> : catalytic constant of the EntE enzyme (s<sup>−1</sup>)</p> | ||
+ | <p> • [S]<sub>C</sub> : substrate concentration (mol/L)</p> | ||
+ | <p> • K<sub>M,E</sub> : Michaelis constant of the EntE enzyme (mol/L)</p> | ||
+ | |||
+ | <h3>4.6.2 Enterobactin Transfer</h3> | ||
+ | <p> Enterobactin needs to be transferred to the water environment to function. This process is taken into account through a passive transusion model.</p> | ||
+ | <p> • K<sub>DspB,C-W</sub> : transfer coefficient through the membrane (s<sup>−1</sup>)</p> | ||
+ | |||
+ | |||
+ | |||
+ | <h2>4.7 Rust Removel</h2> | ||
+ | <p> The rust is removed by the chelation of enterobactin.</p> | ||
+ | <p> The equilibrum constant of this formula can be written as:</p> | ||
+ | <p> • K<sub>Ent-Fe</sub> : chelation coefficient of enterobactin to Fe<sup>3+</sup> (M<sup>−1</sup>)</p> | ||
+ | <p> • K<sub>sp,Fe(OH)3</sub> : precipitation coefficient of Fe(OH)<sub>3</sub> (s<sup>−1</sup>)</p> | ||
+ | <p> And in this formula, </p> | ||
+ | <p> So the the concentration of Ent-Fe<sup>3+</sup> can be written as:</p> | ||
+ | <p> And amount of rust can be showed:</p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">5. Solver</h1> | ||
+ | <p> The system of ODEs was solved using Matlab R2016a. And we used the ode15s solver.</p> | ||
+ | <p> The complete set of ODEs is detailed here:</p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">6. Result</h1> | ||
+ | <p> At the beginning of the project, we needed to know if our quorum sensing would work in practice and if the information transmission between the transerent modules was possible and sufficiently fast. We thus carried out simulations by solving the ODEs system to have a first estimation of the dynamics of our synthetic system.</p> | ||
+ | <p> The initial conditions, such as the concentrations of E.coli and HSL were set to biologically plausible values.</p> | ||
+ | <p> [HSL]<sub>W</sub> = 10<sup>-5</sup> mol/L</p> | ||
+ | <p> [E.coli] = 1.66*10<sup>-12</sup> mol/L (10<sup>12</sup> cell/L, OD<sub>600</sub>=1.5)</p> | ||
+ | <p> [Biof]<sub>0</sub> = 1 (amount)</p> | ||
+ | <p> [Rust]<sub>0</sub> = 1 (amount)</p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="width: 30%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/1/11/T--ECUST--ModelOverviewF1.png" | ||
+ | class="zoom"> | ||
+ | </figure> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="width: 30%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/1/11/T--ECUST--ModelOverviewF1.png" | ||
+ | class="zoom"> | ||
+ | </figure> | ||
+ | <p> The model result shows that usinng our engineered E.coli to remove a certain amount of biofilm needs about 2.5 days and to remove a certain amount of rust needs less than 100 minutes. The result is close to the real value which confirmes the feasibility of our project .</p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="width: 30%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/1/11/T--ECUST--ModelOverviewF1.png" | ||
+ | class="zoom"> | ||
+ | </figure> | ||
+ | <p> This visual representation of the system's dynamics also allowed us to check that each variable evolves in a realistic range of concentrations, hence indicating the model predicts a consistent behavior.</p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">7. Addendum</h1> | ||
+ | <p> Data and Parameter:</p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">References</h1> | ||
+ | <p>1. QIAGEN, Origins of replication and copy numbers of various plasmids and cosmids In: Growth Of Bacterial Cultures, 2013 - 2017.</p> | ||
+ | <p>2. Esquerre T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal L, Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates. BMC Genomics. 2015, 16, 275,</p> | ||
+ | <p>3. Li Y C, Zhu J R. Role of N-acyl homoserine lactone (HSL)-based quorum sensing (QS) in aerobic sludge granulation.[J]. Applied Microbiology & Biotechnology, 2014, 98(17):7623-7632.</p> | ||
+ | <p>4. Xiang Chen,Faming Zhu,Yunhe Cao,et al. Novel Expression Vector for Secretion of Cecropin AD in Bacillus subtilis with Enhanced Antimicrobial Activity[J]. Antimicrobial Agents and Chemotherapy,2009,53(9):3683-3689.</p> | ||
+ | <p>5. (Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 2010;38(suppl 1):D750–D753. </p> | ||
+ | <p>Bionumber: 103021\107727\100197\114111\101440</p> | ||
+ | <p>6. Carrano CJ, KN R (1979) Ferric Ion Sequestering Agents. 2. Kinetics and Mechanism of Iron Removal from Transferrin by Enterobactin and Synthetic Tricatechols. J Am Chem Soc 101: 5401–5404.</p> | ||
</div> | </div> | ||
</main> | </main> | ||
+ | </body> | ||
</div> | </div> | ||
</html> | </html> | ||
{{ECUST/SubFooter}} | {{ECUST/SubFooter}} |
Revision as of 14:00, 17 October 2018