Line 101: | Line 101: | ||
<div class="section_title "> | <div class="section_title "> | ||
<div align="center"> <h2 class="title_color"> Project Overview</h2></div><hr> | <div align="center"> <h2 class="title_color"> Project Overview</h2></div><hr> | ||
− | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;">There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO2, and broad consensus that this will have serious consequences in terms of climate change. A number of CO2 sequestration methods have been proposed in order to capture and concentrate CO2. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO2 capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO2, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO2 under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO2 capture, including the following aspects: </p> |
− | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 1) Molecular simulation; </p> | |
− | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 1) | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 2) Engineered E. coli strains expressing wild-type and mutant CA2; </p> |
− | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 2) | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 3) Application of mutant CA2 for CO2 capture. </p> |
− | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 3) | + | |
− | + | ||
− | + | ||
Revision as of 14:53, 17 October 2018
Project Overview
There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO2, and broad consensus that this will have serious consequences in terms of climate change. A number of CO2 sequestration methods have been proposed in order to capture and concentrate CO2. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO2 capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO2, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO2 under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO2 capture, including the following aspects:
1) Molecular simulation;
2) Engineered E. coli strains expressing wild-type and mutant CA2;
3) Application of mutant CA2 for CO2 capture.