(9 intermediate revisions by 4 users not shown) | |||
Line 22: | Line 22: | ||
<!--================Header Area =================--> | <!--================Header Area =================--> | ||
− | + | <header class="header_area"> | |
<div class="container"> | <div class="container"> | ||
<nav class="navbar navbar-expand-lg navbar-light"> | <nav class="navbar navbar-expand-lg navbar-light"> | ||
Line 37: | Line 37: | ||
<li class="nav-item "><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li> | <li class="nav-item "><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li> | ||
<li class="nav-item submenu dropdown"> | <li class="nav-item submenu dropdown"> | ||
− | <a href=" | + | <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">TEAM</a> |
<ul class="dropdown-menu"> | <ul class="dropdown-menu"> | ||
<li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Team | <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Team | ||
Line 46: | Line 46: | ||
</li> | </li> | ||
<li class="nav-item submenu dropdown"> | <li class="nav-item submenu dropdown"> | ||
− | <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a> | + | <a href="#" style="color:#52C5FD" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a> |
<ul class="dropdown-menu"> | <ul class="dropdown-menu"> | ||
<li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li> | <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li> | ||
Line 77: | Line 77: | ||
<li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/HP_FOR_SILVER">HP for Silver</a></li> | <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/HP_FOR_SILVER">HP for Silver</a></li> | ||
<li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li> | <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li> | ||
+ | <li class="nav-item"><a class="nav-link" href=" | ||
+ | https://2018.igem.org/Team:AHUT_China/Public_Engagement">Public Engagement</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 98: | Line 100: | ||
<div class="container"> | <div class="container"> | ||
<div class="section_title "> | <div class="section_title "> | ||
− | <div align="center"> <h2 class="title_color"> | + | <div align="center"> <h2 class="title_color"> Project Overview</h2></div><hr> |
− | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;">There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO<span style="font-size: 14px">2</span>, and broad consensus that this will have serious consequences in terms of climate change. A number of CO<span style="font-size: 14px">2</span> sequestration methods have been proposed in order to capture and concentrate CO<span style="font-size: 14px">2</span>. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO<span style="font-size: 14px">2</span> capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO<span style="font-size: 14px">2</span>, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO<span style="font-size: 14px">2</span> under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO<span style="font-size: 14px">2</span> capture, including the following aspects: </p> | |
− | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 1) Molecular simulation; </p> | |
− | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 2) Engineered E. coli strains expressing wild-type and mutant CA2; </p> | |
− | + | <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;"> 3) Application of mutant CA2 for CO<span style="font-size: 14px">2</span> capture. </p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Latest revision as of 15:33, 17 October 2018
Project Overview
There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO2, and broad consensus that this will have serious consequences in terms of climate change. A number of CO2 sequestration methods have been proposed in order to capture and concentrate CO2. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO2 capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO2, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO2 under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO2 capture, including the following aspects:
1) Molecular simulation;
2) Engineered E. coli strains expressing wild-type and mutant CA2;
3) Application of mutant CA2 for CO2 capture.