Difference between revisions of "Team:AHUT China/Overview"

 
(5 intermediate revisions by 4 users not shown)
Line 35: Line 35:
 
                     <div class="collapse navbar-collapse offset" id="navbarSupportedContent">
 
                     <div class="collapse navbar-collapse offset" id="navbarSupportedContent">
 
                         <ul class="nav navbar-nav menu_nav ml-auto">
 
                         <ul class="nav navbar-nav menu_nav ml-auto">
                             <li class="nav-item active"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li>  
+
                             <li class="nav-item "><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li>  
 
                             <li class="nav-item submenu dropdown">
 
                             <li class="nav-item submenu dropdown">
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">TEAM</a>
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">TEAM</a>
Line 46: Line 46:
 
                             </li>  
 
                             </li>  
 
                             <li class="nav-item submenu dropdown">
 
                             <li class="nav-item submenu dropdown">
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a>
+
                                 <a href="#" style="color:#52C5FD" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li>
Line 78: Line 78:
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="
 
                                     <li class="nav-item"><a class="nav-link" href="
https://2018.igem.org/Team:AHUT_China/Public_Engagement">Public_Engagement</a></li>
+
https://2018.igem.org/Team:AHUT_China/Public_Engagement">Public Engagement</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>  
 
                             </li>  
Line 101: Line 101:
 
               <div class="section_title ">
 
               <div class="section_title ">
 
                 <div align="center"> <h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Project Overview</h2></div><hr>
 
                 <div align="center"> <h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Project Overview</h2></div><hr>
                  <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;With greenhouse effect becoming a widespread concern in recent years, how to effectively capture CO2 has become a worldwide problem. At present, CO2 capture mostly includes solvent absorption, physical adsorption and membrane separation, etc.The above CO2 capture technologies all have the disadvantages of high cost, low efficiency and poor circulability. These unavoidable disadvantages hinder their application in production and life. Therefore, new technologies are urgently needed, and the technology of carbonic anhydrase (CA) capture makes up for the shortage of other methods. </p>
+
                <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO<span style="font-size: 14px">2</span>, and broad consensus that this will have serious consequences in terms of climate change. A number of CO<span style="font-size: 14px">2</span> sequestration methods have been proposed in order to capture and concentrate CO<span style="font-size: 14px">2</span>. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO<span style="font-size: 14px">2</span> capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO<span style="font-size: 14px">2</span>, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO<span style="font-size: 14px">2</span> under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO<span style="font-size: 14px">2</span> capture, including the following aspects: </p>
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;First, our project successfully expressed wild type carbonic anhydrase in E. coli, however, its industrial application was limited due to poor stability and easy inactivation. Therefore, based on this, molecular simulation technology was used to investigate effect of amino acid residues mutation on the conformation and activity of enzyme, and the mutant carbonic anhydrase with higher thermal stability was obtained.The project includes the following aspects: </p>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1) Molecular simulation; </p>
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1) molecular simulation; </p>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2) Engineered E. coli strains expressing wild-type and mutant CA2; </p>
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2) construction of escherichia coli strains expressing wild type and mutant CA2; </p>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3) Application of mutant CA2 for CO<span style="font-size: 14px">2</span> capture. </p>
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3) expression and purification of CA2; </p>
+
 
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;4) practical application of CA2: CO2 capture. </p>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 18px;">&nbsp;&nbsp;&nbsp;&nbsp;The experimental results showed that the purified mutant carbonic anhydrase exhibited higher stability and activity than wild type carbonic anhydrase, achieving efficient capture of CO2.</p>
+
 
                  
 
                  
 
                  
 
                  

Latest revision as of 15:33, 17 October 2018

Royal Hotel Royal Hotel







     Project Overview


There is an excessive volume of greenhouse gases in the atmospheric system, which contain about 77% CO2, and broad consensus that this will have serious consequences in terms of climate change. A number of CO2 sequestration methods have been proposed in order to capture and concentrate CO2. The biomimetic approach via the use of an enzyme, namely carbonic anhydrase, offers important advantages if compared to the other methods for CO2 capturing, such as safe, high catalytic efficiency, and environment friendly. In our project, we use human carbonic anhydrase 2 (CA2) to absorb CO2, however, wild-type CA2 usually lose their activity between 55 and 65 °C, which limits its application for the absorption of CO2 under industrial operating conditions. Therefore, this project uses molecular simulation technology to design a high-efficiency and stable carbonic anhydrase by improving its catalytic properties and biological stability for CO2 capture, including the following aspects:

      1) Molecular simulation;

      2) Engineered E. coli strains expressing wild-type and mutant CA2;

      3) Application of mutant CA2 for CO2 capture.