Line 81: | Line 81: | ||
Once devices that absorb salt are developed in certain surrounding containing strong salt concentration, we can greatly support various functions of other devices for sensing of substances in the environment and bioremediation. Therefore we aim to create a yeast desalination system in order to make iGEMers’ devices work appropriately under their applied situation. | Once devices that absorb salt are developed in certain surrounding containing strong salt concentration, we can greatly support various functions of other devices for sensing of substances in the environment and bioremediation. Therefore we aim to create a yeast desalination system in order to make iGEMers’ devices work appropriately under their applied situation. | ||
</p> | </p> | ||
− | <center><img src="https://static.igem.org/mediawiki/2018/5/58/T--Kyoto--Description.png"></center> | + | <center><img src="https://static.igem.org/mediawiki/2018/5/58/T--Kyoto--Description.png" width="30%"></center> |
<h5 id="Na+濃度が関わる様々な生命現象"> Na+濃度が関わる様々な生命現象</h5> | <h5 id="Na+濃度が関わる様々な生命現象"> Na+濃度が関わる様々な生命現象</h5> |
Revision as of 16:16, 17 October 2018
Motivation
Synthetic biology faces our daily challenges and aims to develop new devices that provide solutions to every situation, every environment, and every problem that exists in the world. Many iGEM teams try to create such devices. Some teams try to collect heavy metal from sea water, drainage and so on, and other teams aim to detect some substrates through protein connections. Do they work most effectively under their applied environment? Insufficient of the concentration will be solved by adding sodium. But how about when salt concentrations are too high? You may think adding water is fine, but how will you dilute sea or sewage? Can you do that? Adding water changes other ion concentrations as well. Once devices that absorb salt are developed in certain surrounding containing strong salt concentration, we can greatly support various functions of other devices for sensing of substances in the environment and bioremediation. Therefore we aim to create a yeast desalination system in order to make iGEMers’ devices work appropriately under their applied situation.
Na+濃度が関わる様々な生命現象
イントロダクションで述べたようにNa+濃度はmacromoleculeの反応性にとても重要な影響を及ぼす。濃度が適切でないとRNAフォールディングはうまくなされないし、濃度が高いと分子同士の結合が阻害される一方で、低いと非特異的な結合が多くなる。例えば、私たちが数種類の塩濃度条件下でGPFのpull down assayを行ったところ、そのような結果が得られた(More detail is Here (GFPパーツE1010へのリンク))