Difference between revisions of "Team:Kyoto/Workflow"

 
(4 intermediate revisions by the same user not shown)
Line 73: Line 73:
 
margin-left: 10%;
 
margin-left: 10%;
 
}
 
}
 +
h5 {
 +
background: linear-gradient(transparent 90%, #25B6CA 80%);
 +
margin-left: 10%;
 +
}
 +
  
  
Line 163: Line 168:
 
</div>
 
</div>
  
<ol style="margin-left:10%;"><img src="https://static.igem.org/mediawiki/2018/0/03/T--Kyoto--1%29_Creation_of_KO_yeast_strains.png"width="90%"></ol>
+
<h5 id="res1">1)Creation of KO yeast strains</h5>
 
<p class="description">At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。
 
<p class="description">At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。
作り方はSpecial protocolを見てください。(リンク)
+
作り方は<a href="https://2018.igem.org/Team:Kyoto/SpecialMethods"><font color=#000000;>Special protocol</font></a>を見てください。
 
Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。
 
Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。
 
<ul class="strain">
 
<ul class="strain">
Line 174: Line 179:
 
</ul></p>
 
</ul></p>
  
<ol style="margin-left:10%;"><img src="https://static.igem.org/mediawiki/2018/9/92/T--Kyoto--2%29_Plasmid_construction.png "width="90%"></ol>
+
<h5 id="res2">2)Plasmid construction</h5>
 
<p class="description">次に、私たちはプラスミドのコンストラクションを行いました。デザインページにあるように、塩耐性のためにMangrin, ZrGPD1,ZrFPS1を、塩の回収のためにAtHKT1,AVP1, AtNHXS1, SseNHX1の作成をしました。
 
<p class="description">次に、私たちはプラスミドのコンストラクションを行いました。デザインページにあるように、塩耐性のためにMangrin, ZrGPD1,ZrFPS1を、塩の回収のためにAtHKT1,AVP1, AtNHXS1, SseNHX1の作成をしました。
  
Line 188: Line 193:
  
  
<ol style="margin-left:10%;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Kyoto--3%29_Assesment_of_halotorelance.png "width="90%"></ol>
+
<h5 id="res3">3)Assesment of halotorelance</h5>
  
  
<ol style="margin-left:10%;"><img src="https://static.igem.org/mediawiki/2018/8/86/T--Kyoto--4%29_Assesment_of_the_amount_of_absorbing_Na%2B.png"width="90%"></ol>
+
<h5 id="res4">4)Assesment of the amount of absorbing Na+</h5>
  
  
<ol style="margin-left:10%;"><img src="https://static.igem.org/mediawiki/2018/6/6d/T--Kyoto--5%29_Assesment_of_aggregation.png"width="90%"></ol>
+
<h5 id="res5">5)Assesment of aggregation</h5>
  
<h5 id="res2">2) title title title title title title title</h5>
 
<p>
 
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
 
</p>
 
 
<p>caption caption caption caption caption</p>
 
 
<p>text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text </p>
 
 
<p>text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text </p>
 
  
 
<p class="pic"><img src="https://static.igem.org/mediawiki/2018/c/ca/T--Kyoto--sample--image.jpg" width="60%"></p>
 
<p class="pic"><img src="https://static.igem.org/mediawiki/2018/c/ca/T--Kyoto--sample--image.jpg" width="60%"></p>
Line 215: Line 210:
 
<b>Figure 2-a</b> caption caption caption caption caption<br>
 
<b>Figure 2-a</b> caption caption caption caption caption<br>
  
<b>Figure 2-b</b> caption caption caption caption caption<br>
 
 
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text </p><br>
 
 
<b>Figure 2-c</b> caption caption caption caption caption<br>
 
 
<br>
 
 
<b>Figure 2-d</b> caption caption caption caption caption<br>
 
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
 
<br>
 
text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text
 
</p>
 
<br>
 
 
 
 
<p>text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text (Figure 2-e). </p>
 
<p>text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text</p>
 
 
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/8/8e/Flo2.png" width="45%">
 
<p class="caption"><b>Figure 2-e</b> Time course of the rate of eGFP(+) nematodes.<br>
 
Nematodes were grown on eGFP(+) yeast and examined by fluorescence microscopy at the indicated time. (n=18)
 
</p>
 
 
 
 
<h5 id="res6">6) Improve transport of mRNA to cytosol</h5>
 
<p>As shown in the figure (Figure 6-a), the diameter of the stylet is very small, about a fraction of a single cell of yeast. For this reason, <I>B. xylophilus</I> seemed to draw out the cytoplasmic fraction, but large cellular componentns such as the nucleus may not be efficiently consumed by <I>B. xylophilus.</I></p>
 
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/f/fd/Stylet.jpeg" width="60%"></p>
 
<p class="caption">
 
<b>Figure 6-a</b> Nematode’s stylet, diploid yeast, and haploid yeast. Scale bar : 10μm
 
</p>
 
 
 
 
 
<br></br>
 
<p class="caption">
 
* Dr. Taniguchi, Institute for fronter life and medical science, Kyoto university, conducted an experiment on the process of treating RI on and after in vitro transcription.<br>
 
<p class="caption"><b>Figure 6-c</b> Outline of Xenopus oocyte microinjection<br>
 
<p class="caption"><b>Figure 6-d</b> RNAs produced by in vitro transcription<br>
 
U6 and U6-RRE are used as controls.
 
<br>
 
<p class="caption"><b>Figure 6-e</b> Microinjection of dsGFP with or without RRE into Xenopus oocyte<br>
 
Indicated RNAs with or without Rev protein were injected into Xenopus oocyte nucleus. The oocytes were dissected at the indicated time points (t=0, 60 min). The nuclear RNAs (N) and the cytoplasmic RNAs (C) were extracted and analyzed by PAGE. The left pannel shows dsGFP with RRE (GFP-RRE + GFPrev), the right pannel shows dsGFP without RRE (GFPfwd + GFPrev).<br>
 
<p class="caption"><b>Figure 6-f</b> Long exposure
 
</p>
 
<p>
 
As expected, when U6-RRE is injected together with buffer without Rev, U6-RRE remains in the nucleus, whereas U6 - RRE is injected with buffer containing Rev, U6-RRE was remarkably transported outside the nucleus. This result demonstrated that nuclear export of RNA is promoted depending on both the RRE sequence and the Rev protein in the case of U6 RNA originally staying in the nucleus. These effects indicate that these parts are promising as devices for efficiently transporting highly structured RNA, which is often used in synthetic biology, to the cytoplasm.(<a href=" http://parts.igem.org/Part:BBa_K2403000">BBa_K2403000</a>
 
<a href="http://parts.igem.org/Part:BBa_K2403002">BBa_K2403002</a>)
 
Unfortunately, transcription products of GFP-RRE were too thin to understand whether they responded to Rev. However, from the figure on the right of Figure 6-f, it was also found that dsRNA remained in the nucleus a lot. It is suggested that implementation of a system to promote nucleocytoplasmic transport is effective.
 
Compared to the signal at T = 0, since many signals are lost at 60 minutes after injection, there may be a mechanism for degrading dsRNA in cells. In addition to promoting transportation efficiency, there will be room for improvement to improve stability.
 
<br>
 
<p>This is the Result obtained in this project.
 
We would like to discuss Discussion on interpretation of Result and Future plan.</p>
 
 
   <h6>Reference</h6>
 
   <h6>Reference</h6>
 
       <ul class="reference">
 
       <ul class="reference">

Latest revision as of 16:41, 17 October 2018

Team:Kyoto/Project - 2018.igem.org

1)Creation of KO yeast strains

At a first step, we worked on creation of KO yeast strains which uptake more sodium and therefore show salt-sensitivity. It is because we need to use salt sensitive yeast strains in order to assess functions of proteins which contribute salt torelance, and also Na+を外に漏らさずため込ませたかったからだ。 作り方はSpecial protocolを見てください。 Based on Aachen 2017's result, we created ΔNHA1, ΔENA1ΔNHA1,ΔENA1 at first, and 実験を進めるにあたって東北大学の魚住先生にいただいたG19株(ΔENA1,2,3,4)がよく塩を吸収し、高い塩感受性を示すことがわかり、ENA1だけでなく同じタンデムにあるENA2,3,4もノックアウトする方がいいことがわかった。またNHA1をノックアウトすることも塩吸収に貢献していたため、最後にΔENA1,2,5ΔNHA1も作成しました。以下が私たちが作成した変異株です。実験においては、上記のG19株と、渡部先生にいただいた醤油酵母も用いた。

  • ・ΔNHA1
  • ・ΔENA1ΔNHA1
  • ・ΔENA1
  • ・ΔENA1,2,5ΔNHA1

2)Plasmid construction

次に、私たちはプラスミドのコンストラクションを行いました。デザインページにあるように、塩耐性のためにMangrin, ZrGPD1,ZrFPS1を、塩の回収のためにAtHKT1,AVP1, AtNHXS1, SseNHX1の作成をしました。

text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text

text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text

text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text text

3)Assesment of halotorelance
4)Assesment of the amount of absorbing Na+
5)Assesment of aggregation

Figure 2-a caption caption caption caption caption

Reference
  • [1] X. rong Wang, X. Cheng, Y. dong Li, J. ai Zhang, Z. fen Zhang, and H. rong Wu, “Cloning arginine kinase gene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease,” Eur. J. Plant Pathol., vol. 134, no. 3, pp. 521–532, 2012.
  • [2] A. Sigova, N. Rhind, and P. D. Zamore, “A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe,” genes Dev., 2004.
  • [3] R. Esteban and R. B. Wickner, “A new non-mendelian genetic element of yeast that increases cytopathology produced by M1 double-stranded RNA in ski strains.,” Genetics, 1987.
  • [4] M. T. B. Sloan, Katherine E, Pierre-Emmanuel Gleizes, “Nucleocytoplasmic Transport of RNAs and RNA–Protein Complexes,” J. Mol. Biol., vol. 428, no. 10, pp. 2040–2059, 2016.
  • [5] V. W. Pollard and M. H. Malim, “the Hiv-1 Rev Protein,” Annu. Rev. Microbiol., vol. 52, no. 1, pp. 491–532, 1998.