Difference between revisions of "Team:EPFL"

Line 40: Line 40:
 
           <div class="col-lg-12">
 
           <div class="col-lg-12">
 
             <div class="pr-md-4">
 
             <div class="pr-md-4">
               <h3 class="heading h3 text-white">What is CAPOEIRA ?</h3>
+
               <h3 class="heading h3 text-white">What is CAPOEIRA ?</h2>
 
               <p class="lead text-white my-4">While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project
 
               <p class="lead text-white my-4">While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project
 
                 “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance.
 
                 “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance.
Line 65: Line 65:
 
         <div class="mb-5 text-center">
 
         <div class="mb-5 text-center">
 
           <br>
 
           <br>
           <h3 class="heading h3">This is CAPOEIRA</h3>
+
           <h3 class="heading h3">This is CAPOEIRA</h2>
 
         </div>
 
         </div>
  
Line 71: Line 71:
 
         <div class="row row-grid align-items-center">
 
         <div class="row row-grid align-items-center">
 
           <div class="col-lg-5">
 
           <div class="col-lg-5">
             <img src="https://static.igem.org/mediawiki/2018/0/01/T--EPFL--bioinfo.svg" class="img-center img-fluid" width="400px">
+
             <img src="https://static.igem.org/mediawiki/2018/0/01/T--EPFL--bioinfo.svg" class="img-center img-fluid" width="300px">
 
           </div>
 
           </div>
 
           <div class="col-lg-7 ml-lg-auto">
 
           <div class="col-lg-7 ml-lg-auto">
 
             <div>
 
             <div>
               <h3><font size="+2">Bioinformatics</font></h3>
+
               <h2><font size="+2">Bioinformatics</font></h2>
 
               <p class="lead text-gray my-4">
 
               <p class="lead text-gray my-4">
 
                 <font size="+2">First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells</font>
 
                 <font size="+2">First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells</font>
Line 86: Line 86:
 
         <div class="row row-grid align-items-center">
 
         <div class="row row-grid align-items-center">
 
           <div class="col-lg-5 order-lg-2 ml-lg-auto">
 
           <div class="col-lg-5 order-lg-2 ml-lg-auto">
             <img src="https://static.igem.org/mediawiki/2018/b/b2/T--EPFL--vaccine-logo.svg" class="img-center img-fluid" width="400px">
+
             <img src="https://static.igem.org/mediawiki/2018/b/b2/T--EPFL--vaccine-logo.svg" class="img-center img-fluid" width="300px">
 
           </div>
 
           </div>
 
           <div class="col-lg-7 order-lg-1">
 
           <div class="col-lg-7 order-lg-1">
 
             <div class="pr-lg-7">
 
             <div class="pr-lg-7">
               <h3>Vaccine</h3>
+
               <h2>Vaccine</h2>
               <p class="lead text-gray my-4">Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes</p>
+
               <p class="lead text-gray my-4">
 +
                <font size="+2">Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes</font>
 +
              </p>
  
 
             </div>
 
             </div>
Line 99: Line 101:
 
         <div class="row row-grid align-items-center">
 
         <div class="row row-grid align-items-center">
 
           <div class="col-lg-5">
 
           <div class="col-lg-5">
             <img src="https://static.igem.org/mediawiki/2018/6/6f/T--EPFL--DC-logo.svg" class="img-center img-fluid" width="400px">
+
             <img src="https://static.igem.org/mediawiki/2018/6/6f/T--EPFL--DC-logo.svg" class="img-center img-fluid" width="300px">
 
           </div>
 
           </div>
 
           <div class="col-lg-7 ml-lg-auto">
 
           <div class="col-lg-7 ml-lg-auto">
 
             <div>
 
             <div>
               <h3><font size="+2">Bioinformatics</font></h3>
+
               <h2><font size="+2">Dendritic cell Activation</font></h2>
 
               <p class="lead text-gray my-4">
 
               <p class="lead text-gray my-4">
                 <font size="+2">First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells</font>
+
                 <font size="+2">This encapsulin vaccine activates dendritic cells which trigger T-cell's attack on the neoantigen bearing cancer cells</font>
 +
              </p>
 +
            </div>
 +
          </div>
 +
        </div>
 +
 
 +
        <div class="row row-grid align-items-center">
 +
          <div class="col-lg-5 order-lg-2 ml-lg-auto">
 +
            <img src="https://static.igem.org/mediawiki/2018/3/3d/T--EPFL--follow_up_logo.svg" class="img-center img-fluid" width="300px">
 +
          </div>
 +
          <div class="col-lg-7 order-lg-1">
 +
            <div class="pr-lg-7">
 +
              <h2><font size="+2">Follow-up</font></h2>
 +
              <p class="lead text-gray my-4">
 +
                <font size="+2">Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA</font>
 
               </p>
 
               </p>
  
Line 111: Line 127:
 
           </div>
 
           </div>
 
         </div>
 
         </div>
 +
  
 
       </div>
 
       </div>

Revision as of 17:28, 17 October 2018

iGEM EPFL 2018

CAPOEIRA

Cancer Personalized Encapsulin Immunotherapy and Relapse Assay

Learn more about our project

What is CAPOEIRA ?

While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T-cells’ attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!


This is CAPOEIRA

Bioinformatics

First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells


Vaccine

Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes

Dendritic cell Activation

This encapsulin vaccine activates dendritic cells which trigger T-cell's attack on the neoantigen bearing cancer cells

Follow-up

Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA