|
|
Line 210: |
Line 210: |
| </center> | | </center> |
| | | |
− |
| |
− |
| |
− | <!--<div id="EncapCard">
| |
− | <div class="card">
| |
− | <a data-toggle="collapse" href="#NanocageProfile">
| |
− | <div class="card-header">
| |
− | <h3 class="card-link">
| |
− | Encapsulin Nanocage protein profile
| |
− | </h3>
| |
− | </div>
| |
− | </a>
| |
− | <div id="NanocageProfile" class="collapse" data-parent="#EncapCard">
| |
− | <div class="card-body">
| |
− | ...
| |
− | (<a href="#Sutter"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>)
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div class="card">
| |
− | <a data-toggle="collapse" href="#EncapsLiterature">
| |
− | <div class="card-header">
| |
− | <h3 class="card-link">
| |
− | Encapsulin in Literature
| |
− | </h3>
| |
− | </div>
| |
− | </a>
| |
− | <div id="EncapsLiterature" class="collapse" data-parent="#EncapCard">
| |
− | <div class="card-body">
| |
− | Blablabla
| |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </div>-->
| |
| | | |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
Line 254: |
Line 220: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/7/7a/T--EPFL--VaccineDesign.png" class="img-fluid rounded" width="1000" > | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/7/7a/T--EPFL--VaccineDesign.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted"><b>Figure 3.</b>Overview of vaccine design</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 3.</b> Overview of vaccine design</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 270: |
Line 236: |
| <div id="GenIncorportation" class="collapse" data-parent="#VaccineDesignCard"> | | <div id="GenIncorportation" class="collapse" data-parent="#VaccineDesignCard"> |
| <div class="card-body"> | | <div class="card-body"> |
− | <p class="lead">A major requirement of a neoantigen vaccine is allowing for the facile and secure introduction of neoantigen libraries onto the scaffold/carrier. Using Encapsulin, the optimal method for such a conjugation would be the genetic ligation of the neoantigen oligonucleotide sequence to the C-terminus of Encapsulin, as depicted in Figure 3.</p> | + | <p class="lead">A major requirement of a neoantigen vaccine is allowing for the facile and secure introduction of neoantigen libraries onto the scaffold/carrier. Using Encapsulin, one accessible method for such a conjugation would be the genetic ligation of the neoantigen oligonucleotide sequence to the C-terminus of Encapsulin, as depicted in Figure 4.</p> |
− | <p class="lead">After acquiring the raw Encapsulin sequence from the LBNC lab at EPFL (<span style="color:red"><b>[CHANGE HERE: is it needed?]</b></span> Cassidy-Armstutz et al., 2016), we genetically introduced a HexaHistidine linker between Amino Acids 43 & 44 to create HexaHistidine Encapsulin, with higher heat resistance and better hydrodynamic properties as reported in literature (<span style="color:red"><b>[CHANGE HERE]</b></span> Moon H et al., 2014).</p> | + | <p class="lead">After acquiring the raw Encapsulin sequence from the LBNC lab at EPFL (<a href="#CassidyAmstutz2016"><span style="color:blue">Cassidy-Amstutz <i>et al.</i>, 2016</span></a>; Addgene Catalogue # 86405), we genetically introduced a HexaHistidine linker between Amino Acids 43 & 44 to create HexaHistidine Encapsulin, which was reported to have higher heat resistance and better hydrodynamic properties (<a href="#Moon2014"><span style="color:blue">Moon <i>et al.</i>, 2014</span></a>). This modification was done using a Golden Gate assembly with BsaI as a type IIS restriction enzyme. The insert was assembled from two synthesized oligos (60 bp each which partially anneal) with BsaI cut sites. The insert was converted to dsDNA using PCR. The Original Encapsulin plasmid was amplified using primers incorporating BsaI cut sites and the insert was incorporated using Golden Gate.</p> |
− | <p class="lead">To obtain a rapid, efficient, and reliable incorporation of neoantigens onto the HexaHistidine Encapsulin platform, we designed the plasmid HexaHistidine Encapsulin-CBsaI (Figure 4) (<a href="http://parts.igem.org/Part:BBa_K2686005"><span style="color:blue">Registry Part BBa_K2686005</span></a>) incorporating the HexaHistidine Encapsulin protein & an sfGFP under its native promoter included between two BsaI cut sites after the Encapsulin C-terminus. | + | <br> |
− | The BsaI cut sites would allow for the rapid, scarless introduction of oligonucleotides encoding for the neoantigens using Golden Gate Assembly (Figures 4 and 5). These neoantigens would be fused to the C-terminus of Encapsulin, and displayed on its outer surface. Such a system allows for a reliable, but fast expression of libraries of neoantigens, and this crucial property will be highlighted later.</p> | + | <p class="lead">To obtain a rapid, efficient, and reliable incorporation of neoantigens onto the HexaHistidine Encapsulin platform, we designed the plasmid HexaHistidine Encapsulin-CBsaI (Figure 5) (<a href="http://parts.igem.org/Part:BBa_K2686005"><span style="color:blue">Registry Part BBa_K2686005</span></a>). Starting from the HexaHistidine Encapsulin plasmid, we introduce at the C-terminus an sfGFP CDS under its native promoter flanked by two BsaI cut sites.</p> |
− | <p class="lead">Note that the insert in between the two BsaI cut sites, consisting of sfGFP with a native promoter and terminator, allows for checking the success of the insertion of the neoantigen in case of the need for transformation of cells with the Golden Gate product (green colonies do not contain the desired peptide insert). This feature was only used for the initial characterization of the system, and would not be used in the actual vaccine production, as no in-vivo cloning is required with CAPOEIRA.</p> | + | <p class="lead">The BsaI cut sites would allow for the rapid, scarless introduction of oligonucleotides encoding for the neoantigens using Golden Gate Assembly (Figures 5 & 6). These neoantigens would be fused to the C-terminus of Encapsulin, and displayed on its outer surface. Such a system allows for a reliable, but fast expression of libraries of encapsulin-neoantigens.</p> |
| + | <br> |
| + | <p class="lead">The insert in between the two BsaI cut sites, consisting of sfGFP with a native promoter and terminator, allows for checking the success of the insertion of the neoantigen after transformation of cells with the Golden Gate product (green colonies do not contain the desired peptide insert, but the original plasmid instead). This cloning strategy was useful in the initial characterization of the system and production of the encapsulin fused with OT-1 peptide. For high-throughput production of encapsulin-neoantigen constructs, different strategies avoiding <i>in vivo</i> could be envisioned. </p> |
| </div> | | </div> |
| </div> | | </div> |
Line 325: |
Line 293: |
| <li id="Alexandrov2013">Alexandrov, Ludmil B., et al. "Signatures of mutational processes in human cancer." <i>Nature</i>, 500.7463 (2013): 415.</li> | | <li id="Alexandrov2013">Alexandrov, Ludmil B., et al. "Signatures of mutational processes in human cancer." <i>Nature</i>, 500.7463 (2013): 415.</li> |
| <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> | | <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> |
| + | <li id="CassidyAmstutz2016">Cassidy-Amstutz, Caleb, et al. "Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin." <i>Biochemistry</i>, 55.24 (2016): 3461-3468.</li> |
| <li id="Choi2016">Choi, Bongseo, et al. "Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection." <i>ACS nano</i>, 10.8 (2016): 7339-7350.</li> | | <li id="Choi2016">Choi, Bongseo, et al. "Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection." <i>ACS nano</i>, 10.8 (2016): 7339-7350.</li> |
| <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li> | | <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li> |