Line 70: | Line 70: | ||
<p> | <p> | ||
Antibiotics serve a critical role in remedying bacterial infections, however a major disadvantage to their use is the non-specificity of broad spectrum antibiotics that drastically kills off beneficial bacteria reducing the diversity of the gut flora. The use of antibiotics allows opportunistic pathogens like <i>Clostridium difficile</i> to take advantage of the dysbiosis caused. </p><p> | Antibiotics serve a critical role in remedying bacterial infections, however a major disadvantage to their use is the non-specificity of broad spectrum antibiotics that drastically kills off beneficial bacteria reducing the diversity of the gut flora. The use of antibiotics allows opportunistic pathogens like <i>Clostridium difficile</i> to take advantage of the dysbiosis caused. </p><p> | ||
− | A consequence of antibiotic misuse and the capability of bacteria to readily adapt to versatile conditions, has allowed antibiotic resistance in bacteria to become a major dilemma. Each year in the United States alone 2 million people are subject to infection from antibiotic resistant bacteria. Phage therapy is an alternative to antibiotics. The goal of our project was to engineer a bacteriophage which will infect C. difficile and express genetic constructs designed to suppress toxin production. We will pursue two strategies to achieve this; asRNA and dCAS-9, both of which will target the toxin genes tcdB and tcdA. Ultimately, we aim to produce a phage therapy which will reduce toxigenicity of resident strains of C. difficile without significantly affecting the native gastrointestinal microbiota.</p> | + | A consequence of antibiotic misuse and the capability of bacteria to readily adapt to versatile conditions, has allowed antibiotic resistance in bacteria to become a major dilemma. Each year in the United States alone 2 million people are subject to infection from antibiotic resistant bacteria. Phage therapy is an alternative to antibiotics. The goal of our project was to engineer a bacteriophage which will infect <em>C. difficile</em> and express genetic constructs designed to suppress toxin production. We will pursue two strategies to achieve this; asRNA and dCAS-9, both of which will target the toxin genes tcdB and tcdA. Ultimately, we aim to produce a phage therapy which will reduce toxigenicity of resident strains of <em>C. difficile</em> without significantly affecting the native gastrointestinal microbiota.</p> |
</div> | </div> |
Revision as of 21:48, 17 October 2018