|
|
(36 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | {{EPFL/Header}} | + | {{EPFL/Header-light}} |
| <html> | | <html> |
| <button onclick="topFunctionAlt()" id="myBtn" title="Go to top">Index</button> | | <button onclick="topFunctionAlt()" id="myBtn" title="Go to top">Index</button> |
| <head> | | <head> |
| <style> | | <style> |
− |
| + | |
| .super_script { | | .super_script { |
| font-size: 80%; | | font-size: 80%; |
| } | | } |
− |
| + | |
| p.thicker { | | p.thicker { |
| font-weight: 900; | | font-weight: 900; |
− | } | + | } |
| | | |
| </style> | | </style> |
| + | |
| + | |
| </head> | | </head> |
| | | |
Line 22: |
Line 24: |
| <main> | | <main> |
| | | |
− | <!-- Spotlight -->
| |
− | <section class="slice slice-lg bg-gradient-primary" data-separator="rounded-left" data-separator-orientation="bottom">
| |
− | <div class="container pt-lg-md">
| |
− | <div class="row">
| |
− | <div class="col-lg-8">
| |
− | <h2 class="display-4 text-white">Design</h2>
| |
| | | |
− | </div>
| |
− | </div>
| |
− | </div>
| |
− | </section>
| |
| | | |
− | <section class="slice slice-lg"> | + | <section> |
| <div class="container pt-lg-lg"> | | <div class="container pt-lg-lg"> |
| <div class="row justify-content-center lead"> | | <div class="row justify-content-center lead"> |
| <div class="col-md-12"> | | <div class="col-md-12"> |
| + | |
| + | <h1 class="text-center">Design</h1> |
| + | <br> |
| | | |
| <ul class="nav nav-pills nav-fill flex-column flex-sm-row" id="myTab" role="tablist"> | | <ul class="nav nav-pills nav-fill flex-column flex-sm-row" id="myTab" role="tablist"> |
Line 56: |
Line 51: |
| <div class="container"> | | <div class="container"> |
| <div class="row justify-content-center lead"> | | <div class="row justify-content-center lead"> |
− |
| + | |
| <div class="col-lg-3"> | | <div class="col-lg-3"> |
| <div class="card"> | | <div class="card"> |
Line 63: |
Line 58: |
| </div> | | </div> |
| <div class="list-group list-group-flush"> | | <div class="list-group list-group-flush"> |
− |
| + | |
| <a href="#IntroVaccine" data-scroll-to data-scroll-to-offset="50" class="list-group-item list-group-item-action d-flex justify-content-between"> | | <a href="#IntroVaccine" data-scroll-to data-scroll-to-offset="50" class="list-group-item list-group-item-action d-flex justify-content-between"> |
| <div> | | <div> |
Line 96: |
Line 91: |
| </div> | | </div> |
| </a> | | </a> |
− | <a href="#LibraryExpression" data-scroll-to data-scroll-to-offset="50" class="list-group-item list-group-item-action d-flex justify-content-between">
| + | |
− | <div>
| + | </div> |
− | <span>Library Expression Process</span>
| + | |
− | </div>
| + | |
− | <div>
| + | |
− | <i class="fas fa-angle-right"></i>
| + | |
− | </div>
| + | |
− | </a>
| + | |
| </div> | | </div> |
− | </div>
| |
| </div> | | </div> |
− |
| + | |
| <div class="col-lg-9"> | | <div class="col-lg-9"> |
− |
| + | |
| <h1 id="IntroVaccine">Preface</h1> | | <h1 id="IntroVaccine">Preface</h1> |
| <h3>How Neoantigen-based Cancer Immunotherapy Works</h3> | | <h3>How Neoantigen-based Cancer Immunotherapy Works</h3> |
− | <p class="lead"><b>[FIGURE HERE]</b></p> | + | <p class="lead"> |
− | <p class="lead">A specific neoantigen that is differentially expressed on tumour cells, and not healthy cells is supplied to the patient through a vaccine formulation. Dendritic cells uptake the neoantigen from the vaccine formulation. Alongside the neoantigen, the vaccine formulation supplies an adjuvant that activates the dendritic cell to uptake foreign material, and perceive them as danger signals.</p> | + | <center> |
− | <p class="lead">The dendritic cell then processes the neoantigen and cross-represents it on MHC1 complexes, where naïve CD8+ T cells can recognize it. Once the naïve CD8+ cells recognize the neoantigen, they mature into cytotoxic CD8+ T cells that specifically attack cells that express this neoantigen; in this case, the tumour cells.</p> | + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/b6/T--EPFL--VaccinePipeline.png" class="img-fluid rounded" width="1000" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 1.</b> Fundamental theory behind neoantigen based cancer Immunotherapy.</figcaption> |
| + | </figure> |
| + | </center> |
| + | |
| + | </p> |
| + | <p class="lead">Cells become cancerous because of changes in their genetic makeup. These same changes can result in proteins that are differentially expressed on the cancerous cells but not human cells. These are called <i>neoantigens</i>, and refer to new cancer antigens that can signal the immune system to attack the cancer and eliminate it.</p> |
| + | <p class="lead">A patient is diagnosed with a cancer tumor. A biopsy of the tumor and a biopsy of healthy tissue are acquired to perform whole exome sequencing on both biopsies. A bioinformatic tool (such as CAPOEIRA’s <a href="https://2018.igem.org/Team:EPFL/Software"><span style="color:blue">Ginga</span></a>) processes the whole exome sequences of both the healthy and tumor biopsies used to identify neoantigens. |
| + | A specific neoantigen that is differentially expressed on tumor cells and not healthy cells is supplied to the patient through a vaccine formulation. Dendritic cells of the patient uptake the neoantigen from the vaccine formulation. Alongside the neoantigen, the vaccine formulation supplies an adjuvant that activates the dendritic cell to uptake foreign material, and perceive them as danger signals.</p> |
| + | <p class="lead">The dendritic cell then processes the neoantigen and cross-presents it on MHC-1 complexes on its surface, where naïve CD8+ T cells can recognize it. Once the naïve CD8+ cells recognize the neoantigen, they mature into cytotoxic CD8+ T cells that specifically attack cells expressing this neoantigen; in this case, the tumor cells.</p> |
| </div> | | </div> |
| <br> | | <br> |
| <div class="col-lg-12"> | | <div class="col-lg-12"> |
| <h3>Rising Importance of Cancer Vaccination</h3> | | <h3>Rising Importance of Cancer Vaccination</h3> |
− | <p class="lead">The immunogenicity of Neoantigens leading to T cell activation has long been demonstrated in patients (<a href="#Wolfel1995"><span style="color:blue">Wolfel <i>et al.</i>, 1995</span></a>). In fact, preclinical and clinical data has already shown that neoantigen specific cytotoxic T lymphocytes (CTLs) constitute the most potent T cell populations for tumour rejection (<a href="#Wolfel1995"><span style="color:blue">Wolfel <i>et al.</i>, 1995</span></a>; <a href="#Matsushita2012"><span style="color:blue">Matsushita <i>et al.</i></span>). | + | <p class="lead">The immunogenicity of neoantigens leading to T-cell activation has long been demonstrated in patients (<a href="#Wolfel1995"><span style="color:blue">Wolfel <i>et al.</i>, 1995</span></a>). In fact, preclinical and clinical data has already shown that neoantigen specific cytotoxic T lymphocytes (CTLs) constitute the most potent T-cell populations for tumor rejection (<a href="#Wolfel1995"><span style="color:blue">Wolfel <i>et al.</i>, 1995</span></a>; <a href="#Matsushita2012"><span style="color:blue">Matsushita <i>et al.</i>, 2012</span></a>). |
− | Still, the natural production of neoantigen specific CTLs by a patient’s immune system is scarce because of low clonal frequency and ineffective presentation of neoantigens (<a href="#Alexandrov2013"><span style="color:blue">Alexandrov <i>et al.</i>, 2013</span></a>; <a href="#Zhu2017"><span style="color:blue">Zhu <i>et al.</i>, 2017</span></a>). Therefore, cancer vaccines or adjuvant cancer therapies (ACT) are crucial to potentiate immunity against neoantigens for cancer treatment. Accordingly, a large number of strategies have been progressed for the creation, formulation and delivery of various cancer vaccines; for example, whole tumor cell lysate, nucleotide (mRNA/ DNA), protein or peptides-based vaccines, dendritic cell (DC) based vaccines, viral vectors, biomaterial-assisted vaccines, and so on. | + | Still, the natural production of neoantigen-specific CTLs by a patient’s immune system is scarce because of low clonal frequency and ineffective presentation of neoantigens (<a href="#Alexandrov2013"><span style="color:blue">Alexandrov <i>et al.</i>, 2013</span></a>; <a href="#Zhu2017"><span style="color:blue">Zhu <i>et al.</i>, 2017</span></a>). Therefore, cancer vaccines or adjuvant cancer therapies (ACT) are crucial to potentiate immunity against neoantigens for cancer treatment. Hence, a large number of strategies have been progressed for the creation, formulation and delivery of various cancer vaccines; for example, whole tumor cell lysate, nucleotide (mRNA/ DNA), protein or peptide-based vaccines, dendritic cell (DC) based vaccines, viral vectors and biomaterial-assisted vaccines.</p> |
− | However, it remains challenging to develop a universal and effective delivery strategy to target neoantigen-based vaccines to professional antigen-presenting cells (APCs) for eliciting robust and potent T cell responses against cancer.</p> | + | <p class="lead">However, it remains challenging to develop a universal and effective delivery strategy to target neoantigen-based vaccines to professional antigen-presenting cells (APCs) for eliciting robust and potent T-cell responses against cancer.</p> |
− | <p class="lead">In general, parenterally injected soluble antigens or adjuvants rapidly spread into the systemic circulation making them ineffective due to their small molecular sizes, poor targeting, and rapid draining in lymph nodes (LNs). This ultimately results in a limited immune response (<a href="#Liu2014"><span style="color:blue">Liu <i>et al.</i>, 2014</span></a>; <a href="#Fifis2004"><span style="color:blue">Fifis <i>et al.</i>, 2004</span></a>). | + | <p class="lead">In general, parenterally injected soluble antigens or adjuvants rapidly spread into the systemic circulation making them ineffective due to their small molecular sizes, poor targeting, and rapid draining in lymph nodes (LNs). This ultimately results in a limited immune response (<a href="#Liu2014"><span style="color:blue">Liu <i>et al.</i>, 2014</span></a>; <a href="#Fifis2004"><span style="color:blue">Fifis <i>et al.</i>, 2004</span></a>).</p> |
− | In addition, even if such soluble tumor neoantigens are acquired by DCs, they would be trapped in endolysosomal compartments and digested into peptides, which are subsequently loaded almost entirely onto MHC class II molecules for presentation to CD4+ helper T cells solely. However, for achieving an effective immune response, the therapeutic cancer vaccine is expected to elicit robust cytotoxic CD8+ T cell responses, which is essential for tumor cell destruction (<a href="#Janssen2005"><span style="color:blue">Janssen <i>et al.</i>, 2005</span></a>). | + | <p class="lead">In addition, even if such soluble tumor neoantigens are acquired by DCs, they would be trapped in endolysosomal compartments and digested into peptides, which are subsequently loaded almost entirely onto MHC class II molecules for presentation to CD4+ helper T-cells solely. However, for achieving an effective immune response, the therapeutic cancer vaccine is expected to elicit robust cytotoxic CD8+ T-cell responses, which is essential for tumor cell destruction (<a href="#Janssen2005"><span style="color:blue">Janssen <i>et al.</i>, 2005</span></a>).</p> |
− | Thus, it is also key for cancer vaccines to enable cytosolic delivery of neoantigens for a successful activation of cytotoxic T-cell mediated immunity. Effectively, having a platform for neoantigen delivery is favourable for vaccine delivery as it protects antigen and adjuvant molecules from degradation and clearing, enhances lymphoid organ targeting, and modulates APCs’ functions for better presentation (<a href="#Amigorena2010"><span style="color:blue">Amigorena <i>et al.</i>, 2010</span></a>).</p> | + | <p class="lead">Thus, it is also key for cancer vaccines to enable cytosolic delivery of neoantigens for a successful activation of cytotoxic T-cell mediated immunity. Effectively, having a platform for neoantigen delivery is favourable for vaccine delivery as it protects antigen and adjuvant molecules from degradation and clearing, enhances lymphoid organ targeting, and modulates APCs’ functions for better presentation (<a href="#Amigorena2010"><span style="color:blue">Amigorena <i>et al.</i>, 2010</span></a>).</p> |
| </div> | | </div> |
| | | |
− |
| + | |
| <div class="col-lg-12"> | | <div class="col-lg-12"> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
Line 133: |
Line 131: |
| <h1 id="EncapsulinDelivery">Encapsulin Antigen Delivery</h1> | | <h1 id="EncapsulinDelivery">Encapsulin Antigen Delivery</h1> |
| <p class="lead">In 2016, an article was published by Sebyung Kang and colleagues describing the employment of the protein cage nanoparticles, Encapsulin (Encap), as neoantigenic peptide nanocarriers by genetically incorporating the OT-1 peptide of ovalbumin (OVA) protein (used as vaccine for B16-OVA melanoma tumor model) to three different positions of the Encap subunit (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>). This article motivated us to look further into Encapsulin as a strong candidate for the vaccine platform.</p> | | <p class="lead">In 2016, an article was published by Sebyung Kang and colleagues describing the employment of the protein cage nanoparticles, Encapsulin (Encap), as neoantigenic peptide nanocarriers by genetically incorporating the OT-1 peptide of ovalbumin (OVA) protein (used as vaccine for B16-OVA melanoma tumor model) to three different positions of the Encap subunit (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>). This article motivated us to look further into Encapsulin as a strong candidate for the vaccine platform.</p> |
− | <p class="lead">In the mentioned study (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>), DCs that were pulsed with constructs of OT1-Encap-C (the model neoantigen peptide OT1 genetically incorporated to the C-terminus of the Encapsulin protein) induced OT-1-specific CD8+ T cell proliferation both in vivo and in vitro. This indicates Encapsulin ability to enhance the uptake of the OT-1 peptides by dendritic cells and the subsequent presentation of these peptides to DC8+ T cells. | + | <p class="lead">In the mentioned study (<a href="#Choi2016"><span style="color:blue">Choi <i>et al.</i>, 2016</span></a>), DCs that were pulsed with constructs of OT1-Encap-C (C-terminal fusion with OT-1 peptide) induced OT-1-specific CD8+ T cell proliferation both in vivo and in vitro. This indicates Encapsulin ability to enhance the uptake of the OT-1 peptides by dendritic cells and the subsequent presentation of these peptides to DC8+ T cells. </p> |
− | OT1-Encap-C presentation to DCs was also able to induce the differentiation of functional effector CD8+ T cells in murine spleen. Finally, OT-1-Encap subcutaneous vaccinations in B16-OVA melanoma tumor bearing mice effectively activated OT-1 peptide specific cytotoxic CD8+ T cells before or even after tumor generation, resulting in significant suppression of tumor growth in prophylactic as well as therapeutic treatments. </p> | + | <p class="lead">OT1-Encap-C presentation to DCs was also able to induce the differentiation of functional effector CD8+ T cells in murine spleen. Finally, OT-1-Encap subcutaneous vaccinations in B16-OVA melanoma tumor bearing mice effectively activated OT-1 peptide specific cytotoxic CD8+ T cells before or even after tumor generation, resulting in significant suppression of tumor growth in prophylactic as well as therapeutic treatments. </p> |
| <p class="lead">Encapsulin was thus chosen as the platform for CAPOEIRA’s vaccine system, for multiple reasons: | | <p class="lead">Encapsulin was thus chosen as the platform for CAPOEIRA’s vaccine system, for multiple reasons: |
| <ol> | | <ol> |
| <li>Encapsulin was shown to have an effective activation of dendritic and T cells in vitro and in vivo</li> | | <li>Encapsulin was shown to have an effective activation of dendritic and T cells in vitro and in vivo</li> |
| <li>Encapsulin allows for the easy conjugation of libraries of neoantigen, as this can be realized through genetic ligation of the neoantigen oligonucleotide sequences to the C-terminus of Encapsulin</li> | | <li>Encapsulin allows for the easy conjugation of libraries of neoantigen, as this can be realized through genetic ligation of the neoantigen oligonucleotide sequences to the C-terminus of Encapsulin</li> |
− | <li>Encapsulin, along with the neoantigens, can be expressed in a rapid and straightforward manner using the cell free expression systems given to us by synthetic biology. Such expression systems also have the advantage of tremendously lowering the usually exorbitant price tag of traditional neoantigen peptide synthesis.</li> | + | <li>Encapsulin, along with the neoantigens, can be expressed in a rapid and straightforward manner using the cell free expression system</li> |
| + | <li>Such expression systems might help in reducing the cost of generating libraries of peptides by other technologies such as solid-phase peptide synthesis</li> |
| </ol> | | </ol> |
− |
| + | |
| </p> | | </p> |
− | <!--<div id="ImportanceCard">
| + | |
− | <div class="card">
| + | |
− | <a data-toggle="collapse" href="#AssistedDelivery">
| + | |
− | <div class="card-header">
| + | |
− | <h3 class="card-link">
| + | |
− | Biomaterial Platform Assisted Delivery
| + | |
− | </h3>
| + | |
− | </div>
| + | |
− | </a>
| + | |
− | <div id="AssistedDelivery" class="collapse" data-parent="#ImportanceCard">
| + | |
− | <div class="card-body">
| + | |
− | (<a href="#Liu2014"><span style="color:blue">Liu <i>et al.</i>, 2014</span></a>; <a href="#Fifis2004"><span style="color:blue">Fifis <i>et al.</i>, 2004</span></a>)
| + | |
− | ...
| + | |
− | (<a href="#Janssen2005"><span style="color:blue">Janssen <i>et al.</i>, 2005</span></a>)
| + | |
− | ...
| + | |
− | (<a href="#Amigorena2010"><span style="color:blue">Amigorena and Savina, 2010</span></a>)
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− |
| + | |
− | <div class="card">
| + | |
− | <a data-toggle="collapse" href="#ConstraintsDelivery">
| + | |
− | <div class="card-header">
| + | |
− | <h3 class="card-link">
| + | |
− | Design Constraints for an efficient antigen delivery platform
| + | |
− | </h3>
| + | |
− | </div>
| + | |
− | </a>
| + | |
− | <div id="ConstraintsDelivery" class="collapse" data-parent="#ImportanceCard">
| + | |
− | <div class="card-body">
| + | |
− | Blablabla
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− |
| + | |
− | </p>-->
| + | |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
| <h1 id="EncapsParagraph">Encapsulin</h1> | | <h1 id="EncapsParagraph">Encapsulin</h1> |
| <p class="lead"> | | <p class="lead"> |
− | Encapsulin (Figure below) is a protein cage nanoparticle found in the thermophilic bacteria <i>Thermotoga maritima</i>. | + | Encapsulin (Figure 2) is a protein cage nanoparticle found in the thermophilic bacteria <i>Thermotoga maritima</i>. |
− | Its crystal structure has been recently solved, and was published in a paper in 2008 (<a href="#Sutter2008"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>). The Encapsulin multimer is assembled from 60 identical 31 kDa monomers having a thin and icosahedral T=1 symmetric cage structure, with interior and exterior diameters of 20 and 24 nm, respectively. The multimer automatically assembles from the monomers once expressed, as it leads to a lower energy state. The C-terminus is outward pointing, allowing for easy conjugation of peptides after the C-terminus (<span style="color:red"><b>[MODIFY THIS]</b></span> MP Beker et al., 2016).</p> | + | Its crystal structure has been recently solved, and was published in a paper in 2008 (<a href="#Sutter2008"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>). The Encapsulin multimer is assembled from 60 identical 31 kDa monomers having a thin and icosahedral T=1 symmetric cage structure, with interior and exterior diameters of 20 and 24 nm, respectively. The multimer automatically assembles from the monomers once expressed, as it leads to a lower energy state. The C-terminus is outward pointing, allowing for easy conjugation of peptides after the C-terminus (<a href="#Moon2014"><span style="color:blue">Moon <i>et al.</i>, 2014</span></a>).</p> |
− |
| + | <p class="lead">The Encapsulin monomer was modified by inserting a Hexahistidine linker (GGGGGGHHHHHHGGGGG) between residues 43 and 44 of the WT Encapsulin (<a href="#Moon2014"><span style="color:blue">Moon <i>et al.</i>, 2014</span></a>). This was shown to convey exceptional heat stability and better hydrodynamic properties for the Encapsulin multimer. These properties are crucial to obtain a simpler and more efficient purification of the Encapsulin protein.</p> |
| + | |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/4/44/T--EPFL--Encapsulin.png" class="img-fluid rounded" width="500"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/4/44/T--EPFL--Encapsulin.png" class="img-fluid rounded" width="500"> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/0a/T--EPFL--EncapsulinModified.png" class="img-fluid rounded" width="500"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/0a/T--EPFL--EncapsulinModified.png" class="img-fluid rounded" width="500"> |
− | <figcaption class="mt-3 text-muted"><i>Left:</i> Scientific Rendition of Encapsulin monomer and Bioassembly based on the pdb;3DKT (VMD). <span style="color:red"><b>[REFERENCE?]</b></span>. <i>Right:</i> Cartoon representation of Encapsulin in its monomeric and multimeric form along with neoantigens and hexahistidine loops.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 2.</b> <i>Left:</i> Scientific Rendition of Encapsulin monomer and Bioassembly based on the pdb-3DKT (VMD). <i>Right:</i> Cartoon representation of Encapsulin in its monomeric and multimeric form along with neoantigens and hexahistidine loops.</figcaption> |
| </figure> | | </figure> |
− | </center>
| + | </center> |
− |
| + | |
− |
| + | |
− |
| + | |
− | <!--<div id="EncapCard">
| + | |
− | <div class="card">
| + | |
− | <a data-toggle="collapse" href="#NanocageProfile">
| + | |
− | <div class="card-header">
| + | |
− | <h3 class="card-link">
| + | |
− | Encapsulin Nanocage protein profile
| + | |
− | </h3>
| + | |
− | </div>
| + | |
− | </a>
| + | |
− | <div id="NanocageProfile" class="collapse" data-parent="#EncapCard">
| + | |
− | <div class="card-body">
| + | |
− | ...
| + | |
− | (<a href="#Sutter"><span style="color:blue">Sutter <i>et al.</i>, 2008</span></a>)
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− |
| + | |
− | <div class="card">
| + | |
− | <a data-toggle="collapse" href="#EncapsLiterature">
| + | |
− | <div class="card-header">
| + | |
− | <h3 class="card-link">
| + | |
− | Encapsulin in Literature
| + | |
− | </h3>
| + | |
− | </div>
| + | |
− | </a>
| + | |
− | <div id="EncapsLiterature" class="collapse" data-parent="#EncapCard">
| + | |
− | <div class="card-body">
| + | |
− | Blablabla
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>-->
| + | |
− |
| + | |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
− | <h1 id="OurVaccine">Our Vaccine Design</h1> | + | <h1 id="OurVaccine">Vaccine Design Project</h1> |
| <p class="lead"> | | <p class="lead"> |
− | .... | + | The vaccine design process aimed at establishing a platform that receives a library of neoantigens from Ginga, and outputs a library of vaccines that incorporate these neoantigens on the surface of Encapsulin (Figure 3).</p> |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/7/7a/T--EPFL--VaccineDesign.png" class="img-fluid rounded" width="1000" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 3.</b> Overview of vaccine design</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| + | |
| <div id="VaccineDesignCard"> | | <div id="VaccineDesignCard"> |
| <div class="card"> | | <div class="card"> |
Line 246: |
Line 184: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="GenIncorportation" class="collapse" data-parent="#VaccineDesignCard"> | + | <div id="GenIncorportation" class="collapse"> <!--data-parent="#VaccineDesignCard"--> |
| <div class="card-body"> | | <div class="card-body"> |
− | Blablabla | + | <p class="lead">A major requirement of a neoantigen vaccine is allowing for the facile and secure introduction of neoantigen libraries onto the scaffold/carrier. Using Encapsulin, one accessible method for such a conjugation would be the genetic ligation of the neoantigen oligonucleotide sequence to the C-terminus of Encapsulin, as depicted in Figure 4.</p> |
| + | <p class="lead">After acquiring the raw Encapsulin sequence from the LBNC lab at EPFL (<a href="#CassidyAmstutz2016"><span style="color:blue">Cassidy-Amstutz <i>et al.</i>, 2016</span></a>; Addgene Catalogue # 86405), we genetically introduced a HexaHistidine linker between Amino Acids 43 & 44 to create HexaHistidine Encapsulin, which was reported to have higher heat resistance and better hydrodynamic properties (<a href="#Moon2014"><span style="color:blue">Moon <i>et al.</i>, 2014</span></a>). This modification was done using a Golden Gate assembly with BsaI as a type IIS restriction enzyme. The insert was assembled from two synthesized oligos (60 bp each which partially anneal) with BsaI cut sites. The insert was converted to dsDNA using PCR. The Original Encapsulin plasmid was amplified using primers incorporating BsaI cut sites and the insert was incorporated using Golden Gate.</p> |
| + | <br> |
| + | <p class="lead">To obtain a rapid, efficient, and reliable incorporation of neoantigens onto the HexaHistidine Encapsulin platform, we designed the plasmid HexaHistidine Encapsulin-CBsaI (Figure 5) (<a href="http://parts.igem.org/Part:BBa_K2686005"><span style="color:blue">Registry Part BBa_K2686005</span></a>). Starting from the HexaHistidine Encapsulin plasmid, we introduce at the C-terminus an sfGFP CDS under its native promoter flanked by two BsaI cut sites.</p> |
| + | <p class="lead">The BsaI cut sites would allow for the rapid, scarless introduction of oligonucleotides encoding for the neoantigens using Golden Gate Assembly (Figures 5 & 6). These neoantigens would be fused to the C-terminus of Encapsulin, and displayed on its outer surface. Such a system allows for a reliable, but fast expression of libraries of encapsulin-neoantigens.</p> |
| + | <br> |
| + | <p class="lead">The insert in between the two BsaI cut sites, consisting of sfGFP with a native promoter and terminator, allows for checking the success of the insertion of the neoantigen after transformation of cells with the Golden Gate product (green colonies do not contain the desired peptide insert, but the original plasmid instead). This cloning strategy was useful in the initial characterization of the system and production of the encapsulin fused with OT-1 peptide. For high-throughput production of encapsulin-neoantigen constructs, different strategies avoiding <i>in vivo</i> could be envisioned. </p> |
| </div> | | </div> |
| + | |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f0/T--EPFL--InsertVaccinePresentation.png" class="img-fluid rounded" width="750" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 4.</b> Genetic Incorporation of Neoantigen Libraries onto our vaccine platform, Encapsulin.</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| + | <br> |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/3/36/T--EPFL--InsertVaccine.png" class="img-fluid rounded" width="750" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 5.</b> CAPOEIRA’s designed plasmid HHEncap_BSaI (Part BBa_K2686005) for neoantigen incorporation following Encapsulin C-terminus.</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| + | <br> |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/9/92/T--EPFL--GoldenGate.png" class="img-fluid rounded" width="750" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 6.</b> Golden Gate Assembly of the Vaccine System.</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| + | |
| + | |
| + | |
| + | |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | |
| <div class="card"> | | <div class="card"> |
| <a data-toggle="collapse" href="#CFEEncap"> | | <a data-toggle="collapse" href="#CFEEncap"> |
Line 261: |
Line 233: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="CFEEncap" class="collapse" data-parent="#VaccineDesignCard"> | + | <div id="CFEEncap" class="collapse"> <!--data-parent="#VaccineDesignCard"--> |
| <div class="card-body"> | | <div class="card-body"> |
− | Blablabla
| + | <p class="lead">We exploited the fact that Encapsulin is made of protein exclusively, and thus, can be fully expressed as a recombinant protein in a bacterial expression system. However, accelerating the pace of the vaccine production requires a new approach for the rapid expression of proteins encoded on plasmid/linear DNA constructs. Current standard bacterial expression systems require days due to cloning and in-vivo transformations. </p> |
| + | <p class="lead">This is why CAPOEIRA uses a cell free expression approach, which preserves the protein production capability and regulatory mechanisms of <i>E. coli</i>. Cell-free systems (Figure 7) use all of the inner workings of a cell without having the constricting boundary of the cell wall and thus the precondition of keeping cells alive (<a href="#Rollin2013"><span style="color:blue">Rollin <i>et al.</i>, 2013</span></a>). This allows speeding the design-expression process. When preparing the cell-free systems, all genomic DNA and membranes are eliminated, resulting in a solution containing all of the cells proteins without the limiting factors of a living cell.</p> |
| + | <p class="lead">The cell free expression has 2 advantages in for CAPOEIRA:</p> |
| + | <ol> |
| + | <li>Faster expression of proteins from DNA constructs (8 to 10 hours of expression), allowing for fast and easy expression of libraries of proteins</li> |
| + | <li>Faster & Easier purification of protein products from cell free expression reactions compared to purification from cells</li> |
| + | </ol> |
| + | |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/e/e8/T--EPFL--CFExpression.png" class="img-fluid rounded" width="1000" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 7.</b> Cell Free Expression of the Vaccine</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | |
| <div class="card"> | | <div class="card"> |
| <a data-toggle="collapse" href="#HPEncap"> | | <a data-toggle="collapse" href="#HPEncap"> |
Line 276: |
Line 262: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="HPEncap" class="collapse" data-parent="#VaccineDesignCard"> | + | <div id="HPEncap" class="collapse"> <!--data-parent="#VaccineDesignCard"--> |
| <div class="card-body"> | | <div class="card-body"> |
− | Blablabla
| + | <p class="lead">The combination of a protein with high heat resistance further improved after Histag modification, along with a cell free expression system allows for an efficient one-step heat purification of our vaccine product. In short, after the expression of the vaccine construct using the cell free expression system (which takes around 10 hours), heat purification of the sample goes as follows (Figure 8):</p> |
| + | <ol> |
| + | <li>Heating at 70 ºC for 20 min</li> |
| + | <li>Putting on ice for 15 min</li> |
| + | <li>Centrifugation at 12,000 xg for 10 min</li> |
| + | <li>Separation of the supernatant (containing the purified vaccine construct) from the pellet</li> |
| + | </ol> |
| + | <center> |
| + | <figure> |
| + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/5/59/T--EPFL--HeatPurification.png" class="img-fluid rounded" width="1000" > |
| + | <figcaption class="mt-3 text-muted"><b>Figure 8.</b> CAPOEIRA’s heat purification approach for the expressed vaccine</figcaption> |
| + | </figure> |
| + | </center> |
| + | <br> |
| + | <p class="lead">This simple heat purification step allows for an exceptional purity of CAPOEIRA’s vaccine system in less than an hour. After the heat purification step, the obtained purity might be very close to a final formulation for vaccine delivery.</p> |
| + | <br> |
| + | |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
− | </p> | + | <!--</p>--> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| |
− | <br>
| |
− | <h1 id="LibraryExpression">Library Expression Process</h1>
| |
− | <p class="lead"></p>
| |
− |
| |
− |
| |
− | <br>
| |
− | <hr style="height:2px;border:none;color:#333;background-color:#333;" />
| |
| | | |
− | <article> | + | |
− | <h2><i><u>References</u></i></h2> | + | <article> |
− | <ol> | + | <h2><i><u>References</u></i></h2> |
− | <li id="Wolfel1995">Wolfel, Thomas, et al. "A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma." <i>Science</i>, 269.5228 (1995): 1281-1284.</li>
| + | <ul> |
− | <li id="Matsushita2012">Matsushita, Hirokazu, et al. "Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting." <i>Nature</i>, 482.7385 (2012): 400.</li>
| + | |
− | <li id="Tran2014">Tran, Eric, et al. "Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer." <i>Science</i>, 344.6184 (2014): 641-645.</li>
| + | |
− | <li id="Tran2016">Tran, Eric, et al. "T-cell transfer therapy targeting mutant KRAS in cancer." <i>New England Journal of Medicine</i>, 375.23 (2016): 2255-2262.</li>
| + | |
− | <li id="Tran2017">Tran, Eric, Paul F. Robbins, and Steven A. Rosenberg. "'Final common pathway'of human cancer immunotherapy: targeting random somatic mutations." <i>Nature immunology</i>, 18.3 (2017): 255.</li>
| + | |
| <li id="Alexandrov2013">Alexandrov, Ludmil B., et al. "Signatures of mutational processes in human cancer." <i>Nature</i>, 500.7463 (2013): 415.</li> | | <li id="Alexandrov2013">Alexandrov, Ludmil B., et al. "Signatures of mutational processes in human cancer." <i>Nature</i>, 500.7463 (2013): 415.</li> |
− | <li id="Zhu2017">Zhu, Guizhi, et al. "Efficient nanovaccine delivery in cancer immunotherapy." <i>ACS nano</i>, 11.3 (2017): 2387-2392.</li>
| |
− |
| |
− | <li id="Liu2014">Liu, Haipeng, et al. "Structure-based programming of lymph-node targeting in molecular vaccines." <i>Nature</i>, 507.7493 (2014): 519.</li>
| |
− | <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li>
| |
− | <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li>
| |
| <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> | | <li id="Amigorena2010">Amigorena, Sebastian, and Ariel Savina. "Intracellular mechanisms of antigen cross presentation in dendritic cells." <i>Current opinion in immunology</i>, 22.1 (2010): 109-117.</li> |
| + | <li id="CassidyAmstutz2016">Cassidy-Amstutz, Caleb, et al. "Identification of a minimal peptide tag for in vivo and in vitro loading of encapsulin." <i>Biochemistry</i>, 55.24 (2016): 3461-3468.</li> |
| <li id="Choi2016">Choi, Bongseo, et al. "Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection." <i>ACS nano</i>, 10.8 (2016): 7339-7350.</li> | | <li id="Choi2016">Choi, Bongseo, et al. "Effective delivery of antigen–encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection." <i>ACS nano</i>, 10.8 (2016): 7339-7350.</li> |
− | | + | <li id="Fifis2004">Fifis, Theodora, et al. "Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors." <i>The Journal of Immunology</i>, 173.5 (2004): 3148-3154.</li> |
| + | <li id="Janssen2005">Janssen, Edith M., et al. "CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death." <i>Nature</i>, 434.7029 (2005): 88.</li> |
| + | <li id="Liu2014">Liu, Haipeng, et al. "Structure-based programming of lymph-node targeting in molecular vaccines." <i>Nature</i>, 507.7493 (2014): 519.</li> |
| + | <li id="Matsushita2012">Matsushita, Hirokazu, et al. "Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting." <i>Nature</i>, 482.7385 (2012): 400.</li> |
| + | <li id="Moon2014">Moon, Hyojin, et al. "Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform." <i>Biomacromolecules</i>, 15.10 (2014): 3794-3801.</li> |
| + | <li id="Rollin2013">Rollin, Joseph A., Tsz Kin Tam, and Y-H. Percival Zhang. "New biotechnology paradigm: cell-free biosystems for biomanufacturing." <i>Green chemistry</i>, 15.7 (2013): 1708-1719.</li> |
| <li id="Sutter2008">Sutter, Markus, et al. "Structural basis of enzyme encapsulation into a bacterial nanocompartment." <i>Nature structural & molecular biology</i>, 15.9 (2008): 939.</li> | | <li id="Sutter2008">Sutter, Markus, et al. "Structural basis of enzyme encapsulation into a bacterial nanocompartment." <i>Nature structural & molecular biology</i>, 15.9 (2008): 939.</li> |
− | </ol> | + | <li id="Wolfel1995">Wolfel, Thomas, et al. "A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma." <i>Science</i>, 269.5228 (1995): 1281-1284.</li> |
| + | <li id="Zhu2017">Zhu, Guizhi, et al. "Efficient nanovaccine delivery in cancer immunotherapy." <i>ACS nano</i>, 11.3 (2017): 2387-2392.</li> |
| + | </ul> |
| </article> | | </article> |
− |
| + | |
| </div> | | </div> |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 327: |
Line 320: |
| <div class="container"> | | <div class="container"> |
| <div class="row justify-content-center lead"> | | <div class="row justify-content-center lead"> |
− |
| + | |
| <div class="col-lg-9"> | | <div class="col-lg-9"> |
− |
| + | |
| <h1 id="IntroFollowup">Introduction</h1> | | <h1 id="IntroFollowup">Introduction</h1> |
| <p class="lead">Through our interviews with health specialists and oncology experts (more information in <a href="https://2018.igem.org/Team:EPFL/Human_Practices"><span style="color:blue">Integrated human practices</span></a>) we assessed the necessity to have a non-invasive treatment companion to determine our vaccine efficacy. Here, we want to provide a proof-of-concept that would allow us to monitor the patient’s response by using the same set of identified neoantigens used for our vaccine. | | <p class="lead">Through our interviews with health specialists and oncology experts (more information in <a href="https://2018.igem.org/Team:EPFL/Human_Practices"><span style="color:blue">Integrated human practices</span></a>) we assessed the necessity to have a non-invasive treatment companion to determine our vaccine efficacy. Here, we want to provide a proof-of-concept that would allow us to monitor the patient’s response by using the same set of identified neoantigens used for our vaccine. |
− | We also believe that it is important to be able to detect relapses in early melanoma stages, as the survival rates for patients dramatically drop to 20% in stage IV compared to 99% survival rate in stage I and II (<a href="#Siegel2018"><span style="color:blue">Siegel <i>et al.</i>, 2018</span></a>). </p> | + | We also believe that it is important to be able to detect relapses in early melanoma stages, as the survival rates for patients dramatically drop to 20% in stage IV compared to 99% survival rate in stage I and II (<a href="#Siegel2018"><span style="color:blue">Siegel <i>et al.</i>, 2018</span></a>). </p> |
| <p class="lead">To answer these needs, we envision a new generation of diagnostic tools by which a liquid peripheral blood draw could give an accurate prognosis regarding the elimination of the tumor cells and, by targeting specific biomarkers, be a good predictor of relapse. This requires a detection system that is both highly sensitive and specific since single base pair polymorphisms, barely detectable in the blood, can lead to tumorigenesis.</p> | | <p class="lead">To answer these needs, we envision a new generation of diagnostic tools by which a liquid peripheral blood draw could give an accurate prognosis regarding the elimination of the tumor cells and, by targeting specific biomarkers, be a good predictor of relapse. This requires a detection system that is both highly sensitive and specific since single base pair polymorphisms, barely detectable in the blood, can lead to tumorigenesis.</p> |
| <p class="lead">Our idea is to develop a Cas12a detection system coupled to an amplification step. This detection system is rapid, sensitive and specific enough to reliably detect these biomarkers.</p> | | <p class="lead">Our idea is to develop a Cas12a detection system coupled to an amplification step. This detection system is rapid, sensitive and specific enough to reliably detect these biomarkers.</p> |
| </div> | | </div> |
− |
| + | |
| <div class="col-lg-3"> | | <div class="col-lg-3"> |
| <div class="card"> | | <div class="card"> |
Line 343: |
Line 336: |
| </div> | | </div> |
| <div class="list-group list-group-flush"> | | <div class="list-group list-group-flush"> |
− |
| + | |
| <a href="#IntroFollowup" data-scroll-to data-scroll-to-offset="50" class="list-group-item list-group-item-action d-flex justify-content-between"> | | <a href="#IntroFollowup" data-scroll-to data-scroll-to-offset="50" class="list-group-item list-group-item-action d-flex justify-content-between"> |
| <div> | | <div> |
Line 391: |
Line 384: |
| <i class="fas fa-angle-right"></i> | | <i class="fas fa-angle-right"></i> |
| </div> | | </div> |
− | </a> | + | </a> |
− |
| + | |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 404: |
Line 397: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--blood_sample.png" class="img-fluid rounded" width="500" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/8e/T--EPFL--bloodsample.png" class="img-fluid rounded" width="500" > |
− | <figcaption class="mt-3 text-muted">ctDNA and miRNA in blood</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 1.</b> ctDNA and miRNA in blood</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 422: |
Line 415: |
| <br> | | <br> |
| <h3>ctDNA - A look at the tumor DNA</h3> | | <h3>ctDNA - A look at the tumor DNA</h3> |
− | <p class="lead">Circulating free DNA (cfDNA) is a common term that refers to all the DNA fragments that are present in the blood. This fragmented DNA is thought to originate from apoptotic cells (<a href="#Harris2016"><span style="color:blue">Harris <i>et al.</i>, 2016</span></a>). In cancer patients the proportion of cfDNAs from necrotic tumor cells - known as “<b>circulating tumour DNA</b>” (<b>ctDNA</b>) - represents a large part of the circulating DNA. | + | <p class="lead">Circulating free DNA (cfDNA) is a common term that refers to all the DNA fragments that are present in the blood. This fragmented DNA is thought to originate from apoptotic cells (<a href="#Harris2016"><span style="color:blue">Harris <i>et al.</i>, 2016</span></a>). In cancer patients the proportion of cfDNAs from necrotic tumor cells - known as “<b>circulating tumor DNA</b>” (<b>ctDNA</b>) - represents a large part of the circulating DNA. |
| These short DNA fragments of size ranging from 100bp to 200bp - with a peak at 145bp (<a href="#Underhill2016"><span style="color:blue">Underhill <i>et al.</i>, 2016</span></a>) - contain virtually all the possible genetic defects that can be found in the original tumor cell population, including somatic point mutations and translocations (<a href="#Harris2016"><span style="color:blue">Harris <i>et al.</i>, 2016</span></a>; <a href="#Calapre2017"><span style="color:blue">Calapre <i>et al.</i>, 2017</span></a>). Moreover, literature has shown that levels of ctDNA in the blood are correlated with progression or remission of disease in several cancers, including melanoma (<a href="#Gray2015"><span style="color:blue">Gray <i>et al.</i>, 2015</span></a>; <a href="#Girotti2016"><span style="color:blue">Girotti <i>et al.</i>, 2016</span></a>; <a href="#Tsao2015"><span style="color:blue">Tsao <i>et al.</i>, 2015</span></a>; <a href="#Calapre2017"><span style="color:blue">Calapre <i>et al.</i>, 2017</span></a>).</p> | | These short DNA fragments of size ranging from 100bp to 200bp - with a peak at 145bp (<a href="#Underhill2016"><span style="color:blue">Underhill <i>et al.</i>, 2016</span></a>) - contain virtually all the possible genetic defects that can be found in the original tumor cell population, including somatic point mutations and translocations (<a href="#Harris2016"><span style="color:blue">Harris <i>et al.</i>, 2016</span></a>; <a href="#Calapre2017"><span style="color:blue">Calapre <i>et al.</i>, 2017</span></a>). Moreover, literature has shown that levels of ctDNA in the blood are correlated with progression or remission of disease in several cancers, including melanoma (<a href="#Gray2015"><span style="color:blue">Gray <i>et al.</i>, 2015</span></a>; <a href="#Girotti2016"><span style="color:blue">Girotti <i>et al.</i>, 2016</span></a>; <a href="#Tsao2015"><span style="color:blue">Tsao <i>et al.</i>, 2015</span></a>; <a href="#Calapre2017"><span style="color:blue">Calapre <i>et al.</i>, 2017</span></a>).</p> |
| <p class="lead">Our goal using ctDNA as biomarkers is to come up with a personalized follow-up, and the personalized touch comes back again from our implemented <a href="https://2018.igem.org/Team:EPFL/Software"><span style="color:blue">bioinformatic software</span></a>: Ginga. Indeed, Ginga takes as an input the genetic sequence of the tumor, to generate not only a list of neoantigens that will form the basis of our <a href="#Detection"><span style="color:blue">vaccine</span></a>, but also a library of another molecular alteration specific to the tumor, namely chromosomal rearrangements, that we will target for relapse detection.</p> | | <p class="lead">Our goal using ctDNA as biomarkers is to come up with a personalized follow-up, and the personalized touch comes back again from our implemented <a href="https://2018.igem.org/Team:EPFL/Software"><span style="color:blue">bioinformatic software</span></a>: Ginga. Indeed, Ginga takes as an input the genetic sequence of the tumor, to generate not only a list of neoantigens that will form the basis of our <a href="#Detection"><span style="color:blue">vaccine</span></a>, but also a library of another molecular alteration specific to the tumor, namely chromosomal rearrangements, that we will target for relapse detection.</p> |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/3/32/T--EPFL--ctDNAinblood.png" class="img-fluid rounded" width="500" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c3/T--EPFL--bloodsample3.png" class="img-fluid rounded" width="500" > |
− | <figcaption class="mt-3 text-muted">Overview of the release of ctDNA in the blood by necrotic cancer cells. These are, along with some miRNAs, promising biomarkers present in the blood.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 2.</b> Overview of the release of ctDNA in the blood by necrotic cancer cells. These are, along with some miRNAs, promising biomarkers present in the blood.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| <br> | | <br> |
− |
| + | |
| <div id="ctDNABiom"> | | <div id="ctDNABiom"> |
| <div class="card"> | | <div class="card"> |
Line 461: |
Line 454: |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | |
| | | |
| <!-- </p>--> | | <!-- </p>--> |
Line 467: |
Line 460: |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | |
| <div class="tab-pane fade" id="miRNA1" role="tabpanel" aria-labelledby="contact-tab"> | | <div class="tab-pane fade" id="miRNA1" role="tabpanel" aria-labelledby="contact-tab"> |
| <br> | | <br> |
Line 473: |
Line 466: |
| <p class="lead"><b>MicroRNAs</b> (<b>miRNAs</b>) are short (18-24 nt) non-coding RNA molecules which act as post-transcriptional regulators of gene expression. Over the years, miRNAs have been proved to play a critical role in a variety of different diseases, including cancer (<a href="#Larrea"><span style="color:blue">Larrea <i>et al.</i>, 2016</span></a>). Moreover, miRNAs are remarkably stable in human plasma (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>), and several miRNAs circulating in the blood have recently been shown to be dysregulated (either over- or under-expressed) in patients with certain cancers, including melanoma, with respect to healthy subjects (<a href="#Mirzaei"><span style="color:blue">Mirzaei <i>et al.</i>, 2016</span></a>). For these reasons, miRNAs have been proposed as potential prognostic and diagnostic biomarkers for melanoma, which makes them suitable candidates for the follow-up part of our project as well.</p> | | <p class="lead"><b>MicroRNAs</b> (<b>miRNAs</b>) are short (18-24 nt) non-coding RNA molecules which act as post-transcriptional regulators of gene expression. Over the years, miRNAs have been proved to play a critical role in a variety of different diseases, including cancer (<a href="#Larrea"><span style="color:blue">Larrea <i>et al.</i>, 2016</span></a>). Moreover, miRNAs are remarkably stable in human plasma (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>), and several miRNAs circulating in the blood have recently been shown to be dysregulated (either over- or under-expressed) in patients with certain cancers, including melanoma, with respect to healthy subjects (<a href="#Mirzaei"><span style="color:blue">Mirzaei <i>et al.</i>, 2016</span></a>). For these reasons, miRNAs have been proposed as potential prognostic and diagnostic biomarkers for melanoma, which makes them suitable candidates for the follow-up part of our project as well.</p> |
| <p class="lead">Previous iGEM teams (e.g. NUDT China 2016 team) have shown promising results with Rolling Circle Amplification of miRNAs by means of dumbbell-shaped probes (details in “Amplification”). Our aim is to investigate whether is possible to combine this dumbbell probe design with a Cas12a system to achieve a sensitive and specific detection assay.</p> | | <p class="lead">Previous iGEM teams (e.g. NUDT China 2016 team) have shown promising results with Rolling Circle Amplification of miRNAs by means of dumbbell-shaped probes (details in “Amplification”). Our aim is to investigate whether is possible to combine this dumbbell probe design with a Cas12a system to achieve a sensitive and specific detection assay.</p> |
− |
| |
| | | |
− |
| + | |
| + | |
| </p> | | </p> |
| </div> | | </div> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
| <h1 id="Cas12a">Cas12a</h1> | | <h1 id="Cas12a">Cas12a</h1> |
| <p class="lead"> | | <p class="lead"> |
| <div id="Cas12"> | | <div id="Cas12"> |
− |
| + | |
| <p class="lead">To answer the need for a fast and robust detection method we chose to work with the newly characterized <b>Cas12a</b> (<b>Cpf1</b>) protein. </p> | | <p class="lead">To answer the need for a fast and robust detection method we chose to work with the newly characterized <b>Cas12a</b> (<b>Cpf1</b>) protein. </p> |
| <p class="lead">CRISPR-Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated) systems are originally inspired by an antiviral defense mechanism used by prokaryotes which work by recognizing and cleaving the foreign DNA/RNA. They have, in the recent years, widely been used as a gene editing tool for their ability to find and cut at a specific site allowing the insertion of a desired sequence. This target sequence is what we call the <i>activator</i>.</p> | | <p class="lead">CRISPR-Cas (clustered regularly interspaced short palindromic repeats–CRISPR-associated) systems are originally inspired by an antiviral defense mechanism used by prokaryotes which work by recognizing and cleaving the foreign DNA/RNA. They have, in the recent years, widely been used as a gene editing tool for their ability to find and cut at a specific site allowing the insertion of a desired sequence. This target sequence is what we call the <i>activator</i>.</p> |
Line 490: |
Line 483: |
| It is also worth mentioning that Cas12a proteins retains the capacity to recognize and cleave ssDNA without any PAM sequence.</p> | | It is also worth mentioning that Cas12a proteins retains the capacity to recognize and cleave ssDNA without any PAM sequence.</p> |
| <p class="lead">As a result of its conformational change upon target recognition, Cas12a unleashes a non-specific endonuclease activity (i.e. <i>collateral cleavage</i>) virtually against any single stranded DNA (ssDNA). Each activated Cas12a protein can cleave huge numbers of ssDNA molecules, and this is what makes this system so suitable for detection, as it greatly amplifies the signal. As explained more in detail in “Fluorescent readout”, by coupling this property to a single-stranded FQ reporter, we can hugely increase even very small signals, which means higher sensitivity for this system.</p> | | <p class="lead">As a result of its conformational change upon target recognition, Cas12a unleashes a non-specific endonuclease activity (i.e. <i>collateral cleavage</i>) virtually against any single stranded DNA (ssDNA). Each activated Cas12a protein can cleave huge numbers of ssDNA molecules, and this is what makes this system so suitable for detection, as it greatly amplifies the signal. As explained more in detail in “Fluorescent readout”, by coupling this property to a single-stranded FQ reporter, we can hugely increase even very small signals, which means higher sensitivity for this system.</p> |
− | <p class="lead">In our assays we worked with the purified Lba-Cas12a (type V-A CRISPR) extracted from <i>Lachnospiraceae bacterium ND2006</i> and provided by <a href="#NebCas12a"><span style="color:blue">New England BioLabs</i></span></a>. | + | <p class="lead">In our assays we worked with the purified Lba-Cas12a (type V-A CRISPR) extracted from <i>Lachnospiraceae bacterium ND2006</i> and provided by <a href="#NebCas12a"><span style="color:blue">New England BioLabs</i></span></a>. |
| </p> | | </p> |
| <div class="card"> | | <div class="card"> |
Line 500: |
Line 493: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="crRNAdes" class="collapse" data-parent="#Cas12"> | + | <div id="crRNAdes" class="collapse"> <!--data-parent="#Cas12"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">The gRNA must contain a 17 to 24bp complementary sequence to the dsDNA of interest. For activating Cas12a and further collateral cleavage, it is crucial that the activator incorporates a T-rich PAM sequence, TTTN, 5’ of the target sequence. Once the protein has recognized the PAM sequence and the gRNA has bound the complementary sequence, the staggered cut will occur around 18 bases 3′ of the PAM and leaves 5′ overhanging ends (<a href="#Zetsche2017"><span style="color:blue">Zetsche <i>et al.</i>, 2017</span></a>).</p> | | <p class="lead">The gRNA must contain a 17 to 24bp complementary sequence to the dsDNA of interest. For activating Cas12a and further collateral cleavage, it is crucial that the activator incorporates a T-rich PAM sequence, TTTN, 5’ of the target sequence. Once the protein has recognized the PAM sequence and the gRNA has bound the complementary sequence, the staggered cut will occur around 18 bases 3′ of the PAM and leaves 5′ overhanging ends (<a href="#Zetsche2017"><span style="color:blue">Zetsche <i>et al.</i>, 2017</span></a>).</p> |
− | <p class="lead">Our gRNAs were transcribed using T7 polymerase starting from a ssDNA with the coding sequence downstream of a T7 promoter. | + | <p class="lead">Our gRNAs were transcribed using T7 polymerase starting from a ssDNA with the coding sequence downstream of a T7 promoter. |
| An appropriate design of the gRNA-coding ssDNA consists of three separate parts in the following order:</p> | | An appropriate design of the gRNA-coding ssDNA consists of three separate parts in the following order:</p> |
| <ul> | | <ul> |
Line 511: |
Line 504: |
| </ul> | | </ul> |
| <p class="lead">The T7 polymerase needs a double stranded region to bind to. It is thus necessary to order a primer for this region. The rest of the sequence can stay single stranded for a lower cost.</p> | | <p class="lead">The T7 polymerase needs a double stranded region to bind to. It is thus necessary to order a primer for this region. The rest of the sequence can stay single stranded for a lower cost.</p> |
− | <h4><span style="color:red"><b>[MISSING FIGURE]</b></span></h4>
| |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/61/T--EPFL--crRNA_design.png" class="img-fluid rounded" width="500" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--gRNA.png" class="img-fluid rounded" width="600" > |
− | <figcaption class="mt-3 text-muted">Cas12a with its guide RNA composed of the direct repeat, also called the scaffold, and the spacer.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 3.</b> Recognition of the target sequence (activator), via complementary binding of the gRNA</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| | | |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 531: |
Line 523: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="Readout" class="collapse" data-parent="#Cas12"> | + | <div id="Readout" class="collapse"> <!--data-parent="#Cas12"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">Following <a href="#Chen2018"><span style="color:blue">Chen <i>et al.</i>, 2018</span></a>, we designed a Cas12a detection assay based on the cleavage of DNaseAlert (IDT), which are fluorescence-quenched oligonucleotide probes that emit a fluorescent signal after DNAse degradation: when DNases are present, the linkage between the fluorophore and its quencher is cleaved, which leads to the emission of a bright signal upon excitation at 535-556 nm (<a href="#DNaseAlertIDT"><span style="color:blue">Integrated DNA Technologies</span></a>).</p> | | <p class="lead">Following <a href="#Chen2018"><span style="color:blue">Chen <i>et al.</i>, 2018</span></a>, we designed a Cas12a detection assay based on the cleavage of DNaseAlert (IDT), which are fluorescence-quenched oligonucleotide probes that emit a fluorescent signal after DNAse degradation: when DNases are present, the linkage between the fluorophore and its quencher is cleaved, which leads to the emission of a bright signal upon excitation at 535-556 nm (<a href="#DNaseAlertIDT"><span style="color:blue">Integrated DNA Technologies</span></a>).</p> |
Line 537: |
Line 529: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/e/ed/T--EPFL--FluorescentReadout.png" class="img-fluid rounded" width="1000" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--Cas12a.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Cas12a assay principles: Activation of Cas12a unleashing the proteins endonuclease activity against ssDNA (here a Fluorophore-Quencher reporter).</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 4.</b> Cas12a assay principles: Activation of Cas12a unleashing the proteins endonuclease activity against ssDNA (here a Fluorophore-Quencher reporter).</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| | | |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
− |
| + | |
| </p> | | </p> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
| <h1 id="SamplePreparation">Sample preparation</h1> | | <h1 id="SamplePreparation">Sample preparation</h1> |
| <p class="lead">A simple blood draw is necessary for both our treatment companion and relapse detection.</p> | | <p class="lead">A simple blood draw is necessary for both our treatment companion and relapse detection.</p> |
| <p class="lead"> | | <p class="lead"> |
− | The analysis of our biomarkers is done directly in the plasma, without the need to isolate them, sparing us precious time, costs and unnecessary contamination that can occur during nucleic acid extraction (<a href="#Abe2003"><span style="color:blue">Abe, 2003</span></a>). The first step for our sample preparation is the isolation of plasma from whole blood. As part of our experiments on ctDNA, we used commercially ordered human plasma for both practical and ethical reasons. The next step is to treat it with PBS then heat it at 95°C for 3 minutes to precipitate proteins. | + | The analysis of our biomarkers is done directly in the plasma, without the need to isolate them, sparing us precious time, costs and unnecessary contamination that can occur during nucleic acid extraction (<a href="#Abe2003"><span style="color:blue">Abe, 2003</span></a>). The first step for our sample preparation is the isolation of plasma from whole blood. As part of our experiments on ctDNA, we used commercially ordered human plasma for both practical and ethical reasons. The next step is to treat it with PBS then heat it at 95°C for 3 minutes to precipitate proteins. |
| </p> | | </p> |
| <p class="lead">Sample preparation for miRNA can theoretically be achieved in a similar way: <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a> showed that is possible to perform amplification of miRNA directly in serum samples pre-diluted in DEPC-treated water and boiled at 95 °C for 10 minutes. We expect that a similar protocol might be applied also to plasma for miRNA, as measurements of miRNA between plasma and serum have been found to be highly correlated (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>).</p> | | <p class="lead">Sample preparation for miRNA can theoretically be achieved in a similar way: <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a> showed that is possible to perform amplification of miRNA directly in serum samples pre-diluted in DEPC-treated water and boiled at 95 °C for 10 minutes. We expect that a similar protocol might be applied also to plasma for miRNA, as measurements of miRNA between plasma and serum have been found to be highly correlated (<a href="#Mitchell"><span style="color:blue">Mitchell <i>et al.</i>, 2008</span></a>).</p> |
| <p class="lead">Amplification of each biomarker is done afterwards, in order to have enough copies to be able to perform the Cas12a assay effectively.</p> | | <p class="lead">Amplification of each biomarker is done afterwards, in order to have enough copies to be able to perform the Cas12a assay effectively.</p> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
| <h1 id="Amplification">Amplification</h1> | | <h1 id="Amplification">Amplification</h1> |
Line 579: |
Line 571: |
| It is important to note that it is possible to replace this method with an isothermal amplification, like LAMP or RPA, to get this assay closer to point of care.</p> | | It is important to note that it is possible to replace this method with an isothermal amplification, like LAMP or RPA, to get this assay closer to point of care.</p> |
| <p class="lead">One of the limitation of a Cas12a is the need for a PAM sequence near the target we want to detect. Following <a href="#Li2018"><span style="color:blue">Li <i>et al.</i>, 2018</span></a> and to overcome this limitation, we designed primers that would add the PAM sequence by introducing synthetic mutations. This enables us to virtually target any desired sequence regardless of existence of a T-rich PAM sequence near the target.</p> | | <p class="lead">One of the limitation of a Cas12a is the need for a PAM sequence near the target we want to detect. Following <a href="#Li2018"><span style="color:blue">Li <i>et al.</i>, 2018</span></a> and to overcome this limitation, we designed primers that would add the PAM sequence by introducing synthetic mutations. This enables us to virtually target any desired sequence regardless of existence of a T-rich PAM sequence near the target.</p> |
− |
| + | |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/d/dd/T--EPFL--ctDNAamplification.png" class="img-fluid rounded" width="1000" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--amplificationctDNA.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Amplification of the target fragment and introduction of the PAM sequence synthetically.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 5.</b> Amplification of the target fragment and introduction of the PAM sequence synthetically.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
− |
| + | |
| </div> | | </div> |
− |
| + | |
| <div class="tab-pane fade" id="miRNA" role="tabpanel" aria-labelledby="contact-tab"> | | <div class="tab-pane fade" id="miRNA" role="tabpanel" aria-labelledby="contact-tab"> |
| <br> | | <br> |
| <p class="lead">Although miRNAs are potentially very valid candidates as biomarkers, they are associated with some hurdles (particularly low abundance) which are not completely overcome by currently existing detection methods (<a href="#Miao"><span style="color:blue">Miao <i>et al.</i>, 2015</span></a>). </p> | | <p class="lead">Although miRNAs are potentially very valid candidates as biomarkers, they are associated with some hurdles (particularly low abundance) which are not completely overcome by currently existing detection methods (<a href="#Miao"><span style="color:blue">Miao <i>et al.</i>, 2015</span></a>). </p> |
| <p class="lead">Among different recent amplification techniques, <b>Rolling Circle Amplification</b> has been proved to be one of the most suitable, thanks to its robustness, simplicity, specificity and high sensitivity (<a href="#Cheng"><span style="color:blue">Cheng <i>et al.</i>, 2009</span></a>). Rolling-Circle Amplification (RCA) is an isothermal amplification (contrarily for instance to Polymerase Chain Reaction) where miRNA (or another short RNA or DNA sequence) is amplified by means of a circular DNA template (i.e. a <i>probe</i>) and a special DNA (or RNA) polymerase: the miRNA acts as a primer, with the RCA product (i.e. the <i>amplicon</i>) consisting in a concatemer containing tens to hundreds of tandem repeats that are complementary to the probe (<a href="#Ali"><span style="color:blue">Ali <i>et al.</i>, 2014</span></a>).</p> | | <p class="lead">Among different recent amplification techniques, <b>Rolling Circle Amplification</b> has been proved to be one of the most suitable, thanks to its robustness, simplicity, specificity and high sensitivity (<a href="#Cheng"><span style="color:blue">Cheng <i>et al.</i>, 2009</span></a>). Rolling-Circle Amplification (RCA) is an isothermal amplification (contrarily for instance to Polymerase Chain Reaction) where miRNA (or another short RNA or DNA sequence) is amplified by means of a circular DNA template (i.e. a <i>probe</i>) and a special DNA (or RNA) polymerase: the miRNA acts as a primer, with the RCA product (i.e. the <i>amplicon</i>) consisting in a concatemer containing tens to hundreds of tandem repeats that are complementary to the probe (<a href="#Ali"><span style="color:blue">Ali <i>et al.</i>, 2014</span></a>).</p> |
− | <p class="lead">Toehold-initiated Rolling Circle Amplification (tiRCA), in particular, employs phi-29 DNA polymerase and is based on structure-switchable <b>dumbbell-shaped probes</b> (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>): upon hybridization with the specific target miRNA, one of the two strands of the double-stranded region of the probe is displaced, resulting in an "activated" circular form of the probe with triggers the start of the RCA reaction. The complete mechanism of RCA is shown in the Figure below:</p> | + | <p class="lead">Toehold-initiated Rolling Circle Amplification (tiRCA), in particular, employs phi-29 DNA polymerase and is based on structure-switchable <b>dumbbell-shaped probes</b> (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>): upon hybridization with the specific target miRNA, one of the two strands of the double-stranded region of the probe is displaced, resulting in an "activated" circular form of the probe with triggers the start of the RCA reaction. The complete mechanism of RCA is shown in Figure 6:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--RCAPipeline.png" class="img-fluid rounded" width="1000" > | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--RCAPipeline.png" class="img-fluid rounded" width="1000" > |
− | <figcaption class="mt-3 text-muted">Schematic representation of the tiRCA reaction. miRNA is represented in <span style="color:Magenta">magenta</span>, the dumbbell-shaped probe is shown in <span style="color:DarkCyan">light blue</span> and the amplicon in <span style="color:green">green</span>.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 6.</b> Schematic representation of the tiRCA reaction. miRNA is represented in <span style="color:Magenta">magenta</span>, the dumbbell-shaped probe is shown in <span style="color:DarkCyan">light blue</span> and the amplicon in <span style="color:green">green</span>.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
− |
| + | |
| <br> | | <br> |
| <p class="lead">Although it is the probe - and not directly the miRNA - to be amplified, RCA allows to significantly increase the concentration of the miRNA sequence in solution: indeed, since a large portion of the probe is complementary to the miRNA, the amplicon of the probe will incorporate several copies of the original miRNA. This can theoretically be exploited to increase the sensitivity of an assay for quantification of miRNA. As later explained, while our Amplification step was mostly inspired by <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>, we explored a new, ambitious Detection step after RCA based on Cas12a (and not on Cas9 and split reporter proteins). This implied designing new probes with specific characteristics for Cas12a, as explained in the following sections.</p> | | <p class="lead">Although it is the probe - and not directly the miRNA - to be amplified, RCA allows to significantly increase the concentration of the miRNA sequence in solution: indeed, since a large portion of the probe is complementary to the miRNA, the amplicon of the probe will incorporate several copies of the original miRNA. This can theoretically be exploited to increase the sensitivity of an assay for quantification of miRNA. As later explained, while our Amplification step was mostly inspired by <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>, we explored a new, ambitious Detection step after RCA based on Cas12a (and not on Cas9 and split reporter proteins). This implied designing new probes with specific characteristics for Cas12a, as explained in the following sections.</p> |
− |
| + | |
| <div id="miRNADesignAmpl"> | | <div id="miRNADesignAmpl"> |
| <div class="card"> | | <div class="card"> |
Line 613: |
Line 605: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="Probes" class="collapse" data-parent="#miRNADesignAmpl"> | + | <div id="Probes" class="collapse"> <!--data-parent="#miRNADesignAmpl"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead"> | | <p class="lead"> |
Line 630: |
Line 622: |
| <br> | | <br> |
| | | |
− | <center> | + | <center> |
| <table style="undefined;table-layout: fixed; width: 911px"> | | <table style="undefined;table-layout: fixed; width: 911px"> |
| <colgroup> | | <colgroup> |
Line 703: |
Line 695: |
| qualitatively the interaction between our probe and let-7a.</p> | | qualitatively the interaction between our probe and let-7a.</p> |
| | | |
− |
| + | |
− |
| + | |
− |
| + | |
− | </p> | + | </p> |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
Line 718: |
Line 710: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="SYBRParagraph" class="collapse" data-parent="#miRNADesignAmpl"> | + | <div id="SYBRParagraph" class="collapse"> <!--data-parent="#miRNADesignAmpl"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">Two main alternatives are suitable in order to test the efficacy of Rolling Circle Amplification (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>; <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>). First of all, the amplicons can be tested by means of an agarose gel to verify the size; nonetheless, this method shows some limitations because of the large size of the amplicons. <!--Indeed, as we also saw from our experiments (link to the <a href="https://2018.igem.org/Team:EPFL/Notebook-Detection"><span style="color:blue">Notebook</span></a>), the size of the amplicons after a 2 hour-RCA is so large that the band is extremely close to the well.--> </p> | | <p class="lead">Two main alternatives are suitable in order to test the efficacy of Rolling Circle Amplification (<a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>; <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>). First of all, the amplicons can be tested by means of an agarose gel to verify the size; nonetheless, this method shows some limitations because of the large size of the amplicons. <!--Indeed, as we also saw from our experiments (link to the <a href="https://2018.igem.org/Team:EPFL/Notebook-Detection"><span style="color:blue">Notebook</span></a>), the size of the amplicons after a 2 hour-RCA is so large that the band is extremely close to the well.--> </p> |
| <p class="lead">A more valid alternative is instead to perform a real-time fluorescence measurement by means of SYBR Green I.</p> | | <p class="lead">A more valid alternative is instead to perform a real-time fluorescence measurement by means of SYBR Green I.</p> |
− |
| + | |
| <br> | | <br> |
| <p class="lead">SYBR green I is an intercalating dye that preferentially binds to minor grooves of double-stranded (dsDNA) (<a href="#Zipper"><span style="color:blue">Zipper <i>et al.</i>, 2004</span></a>). It has also been shown to bind to single-stranded DNA (ssDNA) and RNA (for which instead SYBR Green II is a more suitable option (<a href="#SYBRG"><span style="color:blue">Sigma-Aldrich</span></a>)), but with a significantly lower performance (<a href="#Vitzthum"><span style="color:blue">Vitzthum <i>et al.</i>, 1999</span></a>). </p> | | <p class="lead">SYBR green I is an intercalating dye that preferentially binds to minor grooves of double-stranded (dsDNA) (<a href="#Zipper"><span style="color:blue">Zipper <i>et al.</i>, 2004</span></a>). It has also been shown to bind to single-stranded DNA (ssDNA) and RNA (for which instead SYBR Green II is a more suitable option (<a href="#SYBRG"><span style="color:blue">Sigma-Aldrich</span></a>)), but with a significantly lower performance (<a href="#Vitzthum"><span style="color:blue">Vitzthum <i>et al.</i>, 1999</span></a>). </p> |
Line 730: |
Line 722: |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/ca/T--EPFL--SYBR.jpeg" class="img-fluid rounded"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/ca/T--EPFL--SYBR.jpeg" class="img-fluid rounded"> |
− | <figcaption class="mt-3 text-muted">"Scheme for miRNA detection by TIRCA in vitro" [Reproduced from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a> (Figure 1A)].</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 7.</b> "Scheme for miRNA detection by TIRCA in vitro" [Reproduced from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a> (Figure 1A)].</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| </div> | | </div> |
| </div> | | </div> |
− | </div> | + | </div> |
| <div class="card"> | | <div class="card"> |
| <a data-toggle="collapse" href="#collapseOne"> | | <a data-toggle="collapse" href="#collapseOne"> |
Line 744: |
Line 736: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="collapseOne" class="collapse" data-parent="#miRNADesignAmpl"> | + | <div id="collapseOne" class="collapse"> <!--data-parent="#miRNADesignAmpl"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">This section is more specifically dedicated to the reasonings behind the sequences of our probes.</p> | | <p class="lead">This section is more specifically dedicated to the reasonings behind the sequences of our probes.</p> |
| <div class="card"> | | <div class="card"> |
− | <a data-toggle="collapse" data-parent="#collapseOne" href="#ProbeAnalysis"> | + | <a data-toggle="collapse" href="#ProbeAnalysis"> <!--data-parent="#collapseOne"--> |
| <div class="card-header"> | | <div class="card-header"> |
| <h4 class="card-link"> | | <h4 class="card-link"> |
Line 755: |
Line 747: |
| </div> | | </div> |
| </a> | | </a> |
− | <div id="ProbeAnalysis" class="collapse" data-parent="#DetailedDesign"> | + | <div id="ProbeAnalysis" class="collapse"><!-- data-parent="#DetailedDesign"--> |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">We started our design from the analysis of one probe from <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>, namely "let-7a probe 1" (Probe 2 for us). The sequence was the following one:</p> | | <p class="lead">We started our design from the analysis of one probe from <a href="#Qiu"><span style="color:blue">Qiu <i>et al.</i>, 2018</span></a>, namely "let-7a probe 1" (Probe 2 for us). The sequence was the following one:</p> |
Line 765: |
Line 757: |
| <li>the <u>underlined</u> region is the one complementary to the miRNA (let-7a-5p: <b>UGAGGUAGUAGGUUGUAUAGUU</b>)</li> | | <li>the <u>underlined</u> region is the one complementary to the miRNA (let-7a-5p: <b>UGAGGUAGUAGGUUGUAUAGUU</b>)</li> |
| </ul> | | </ul> |
− |
| + | |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--probe2structurenew.png" class="img-fluid rounded"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f2/T--EPFL--probe2structurenew.png" class="img-fluid rounded"> |
− | <figcaption class="mt-3 text-muted">Secondary structure of "let-7a probe 1" (Probe 2 for us). dG=-10.40.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 8.</b> Secondary structure of "let-7a probe 1" (Probe 2 for us). dG=-10.40.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
− |
| + | |
| <p class="lead">Such probe consists of a double-stranded stem part, a 10 bases-long loop (which from now on we will refer to as "small loop" - on the right in the figure above) and a 16 bases-long loop ("large loop" - on the left). As we can | | <p class="lead">Such probe consists of a double-stranded stem part, a 10 bases-long loop (which from now on we will refer to as "small loop" - on the right in the figure above) and a 16 bases-long loop ("large loop" - on the left). As we can |
| observe, the toehold region of the probe (i.e. the part on the small loop where the miRNA binds) is 7 bases long, in accordance with <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>, who proved it to be the optimal length to achieve both sensitivity and specificity.</p> | | observe, the toehold region of the probe (i.e. the part on the small loop where the miRNA binds) is 7 bases long, in accordance with <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>, who proved it to be the optimal length to achieve both sensitivity and specificity.</p> |
Line 792: |
Line 784: |
| <p class="lead">5'-[reverse complement of miRNA]-[scaffold]-3'</p> | | <p class="lead">5'-[reverse complement of miRNA]-[scaffold]-3'</p> |
| <br> | | <br> |
− | <p class="lead">The expected interaction between amplicon and gRNA is outlined in the figure below:</p> | + | <p class="lead">The expected interaction between amplicon and gRNA is outlined in Figure 9:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/00/T--EPFL--cas9.png" class="img-fluid rounded" width="470"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/0/00/T--EPFL--cas9.png" class="img-fluid rounded" width="470"> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--InteractionProbe2Cas9.png" class="img-fluid rounded" width="450"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/65/T--EPFL--InteractionProbe2Cas9.png" class="img-fluid rounded" width="450"> |
− | <figcaption class="mt-3 text-muted"><i>On the left:</i> Generic interaction between a target and a gRNA for Cas9 [Reproduced from <a href="#Xie"><span style="color:blue">Xie and Yang, 2013</span></a> (Figure 1A)]. <i>On the right:</i> Predicted interaction of one subunit of the amplicon of Probe 2 with the gRNA.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 9.</b> <i>On the left:</i> Generic interaction between a target and a gRNA for Cas9 [Reproduced from <a href="#Xie"><span style="color:blue">Xie and Yang, 2013</span></a> (Figure 1A)]. <i>On the right:</i> Predicted interaction of one subunit of the amplicon of Probe 2 with the gRNA.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 805: |
Line 797: |
| sequential copies of this "unitary" sequence.</h6></p> | | sequential copies of this "unitary" sequence.</h6></p> |
| <hr> | | <hr> |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="card"> | | <div class="card"> |
− | <a data-toggle="collapse" data-parent="#collapseOne" href="#ComparisonCas"> | + | <a data-toggle="collapse" href="#ComparisonCas"> <!-- data-parent="#collapseOne"--> |
| <div class="card-header"> | | <div class="card-header"> |
| <h4 class="card-link"> | | <h4 class="card-link"> |
Line 820: |
Line 812: |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">We then tried to design our own probes for Cas 12a, working backwards from the gRNA.</p> | | <p class="lead">We then tried to design our own probes for Cas 12a, working backwards from the gRNA.</p> |
− | <p class="lead">Contrarily to Cas 9, for which the PAM must be on the 3' side of the target, for Cas12a the PAM must be on the 5’ side of the target instead. This implies that the scaffold part of the gRNA must be on the 5’ side (instead of the 3’) as well (Figure below).</p> | + | <p class="lead">Contrarily to Cas 9, for which the PAM must be on the 3' side of the target, for Cas12a the PAM must be on the 5’ side of the target instead. This implies that the scaffold part of the gRNA must be on the 5’ side (instead of the 3’) as well (Figure 10).</p> |
| | | |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f7/T--EPFL--cas12.png" class="img-fluid rounded" width="450"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/f/f7/T--EPFL--cas12.png" class="img-fluid rounded" width="450"> |
− | <figcaption class="mt-3 text-muted">"Schematic representation of Lba Cas12a nuclease sequence recognition and DNA cleavage". [Reproduced from <a href="#NebCas12a"><span style="color:blue">New England BioLabs</span></a>].</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 10.</b> "Schematic representation of Lba Cas12a nuclease sequence recognition and DNA cleavage". [Reproduced from <a href="#NebCas12a"><span style="color:blue">New England BioLabs</span></a>].</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
| <br> | | <br> |
− |
| + | |
| <p class="lead">Below is shown a direct comparison of the interaction between target amplicon and gRNA for Cas 9 and Cas 12a.</p> | | <p class="lead">Below is shown a direct comparison of the interaction between target amplicon and gRNA for Cas 9 and Cas 12a.</p> |
− |
| + | |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--Cas9Cas12aForMiRNA.png" class="img-fluid rounded" width="800"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/b/bd/T--EPFL--Cas9Cas12aForMiRNA.png" class="img-fluid rounded" width="800"> |
− | <figcaption class="mt-3 text-muted">Comparison of the interaction between target amplicon and gRNA for Cas 9 (<i>on the left</i>) and Cas 12a (<i>on the right</i>).</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 11.</b> Comparison of the interaction between target amplicon and gRNA for Cas 9 (<i>on the left</i>) and Cas 12a (<i>on the right</i>).</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 851: |
Line 843: |
| </div> | | </div> |
| <div class="card"> | | <div class="card"> |
− | <a data-toggle="collapse" data-parent="#collapseOne" href="#Sequences"> | + | <a data-toggle="collapse" href="#Sequences"> <!--data-parent="#collapseOne"--> |
| <div class="card-header"> | | <div class="card-header"> |
| <h4 class="card-link"> | | <h4 class="card-link"> |
Line 861: |
Line 853: |
| <div class="card-body"> | | <div class="card-body"> |
| <p class="lead">From the template above we can therefore conclude that the gRNA for our Cas 12a system, designed as the one for Cas 9 from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>, has to be: </p> | | <p class="lead">From the template above we can therefore conclude that the gRNA for our Cas 12a system, designed as the one for Cas 9 from <a href="#Deng"><span style="color:blue">Deng <i>et al.</i>, 2014</span></a>, has to be: </p> |
− | <p class="lead">5’-(UAAUUUCUACUAAGUGUAGAU)AACUAU<span style="color:red">|</span>ACAACCUAC<i>UACCUCA</i>-3’ [<b><i>gRNA sequence</i></b>]</p> | + | <p class="lead">5’-(UAAUUUCUACUAAGUGUAGAU)AACUAU<span style="color:red">|</span>ACAACCUAC<i>UACCUCA</i>-3’ [<b><i>gRNA sequence</i></b>]</p> |
| <br> | | <br> |
| <p class="lead">From the specifications for the probe above (10 bases small loop, 16 bases large loop) and from the gRNA sequence, the template amplicon therefore needs to have the following structure:</p> | | <p class="lead">From the specifications for the probe above (10 bases small loop, 16 bases large loop) and from the gRNA sequence, the template amplicon therefore needs to have the following structure:</p> |
Line 870: |
Line 862: |
| <br> | | <br> |
| <p class="lead">We also wanted to test the case of probes with the amplicon having the PAM sequence not on the large loop, but on the stem instead (i.e. a double-stranded PAM, as usually required in Cas systems, and not single-stranded). We considered in this case three different alternatives:</p> | | <p class="lead">We also wanted to test the case of probes with the amplicon having the PAM sequence not on the large loop, but on the stem instead (i.e. a double-stranded PAM, as usually required in Cas systems, and not single-stranded). We considered in this case three different alternatives:</p> |
− |
| + | |
| <ol> | | <ol> |
| <li><p class="lead">Changing 4 bases in the large loop in order for them to be complementary to the PAM sequence, without adding more bases. This leads to a 19 bases-long stem, a 10 bases-long "small" loop and a 8 bases-long "large" loop. The template sequence of the amplicon is the following one:</p> | | <li><p class="lead">Changing 4 bases in the large loop in order for them to be complementary to the PAM sequence, without adding more bases. This leads to a 19 bases-long stem, a 10 bases-long "small" loop and a 8 bases-long "large" loop. The template sequence of the amplicon is the following one:</p> |
Line 891: |
Line 883: |
| <p class="lead">Finally, Probe 10 was designed in a way to have a mismatched base in the stem with respect to the let-7a sequence (<mark>highlighted</mark> in both strands below):</p> | | <p class="lead">Finally, Probe 10 was designed in a way to have a mismatched base in the stem with respect to the let-7a sequence (<mark>highlighted</mark> in both strands below):</p> |
| <p class="lead">5'-p<u><span style="color:orange">ACAACCTAC</span><i>TACCTCA</u>AAC</i><span style="color:green">GTAGGTTGTA<mark><span style="color:green">G</span></mark>AGTT</span><i>TAAAGGGAGTCGGCGG</i><u><span style="color:orange">AACT<mark><span style="color:orange">C</span></mark>T</span></u>-3'</p> | | <p class="lead">5'-p<u><span style="color:orange">ACAACCTAC</span><i>TACCTCA</u>AAC</i><span style="color:green">GTAGGTTGTA<mark><span style="color:green">G</span></mark>AGTT</span><i>TAAAGGGAGTCGGCGG</i><u><span style="color:orange">AACT<mark><span style="color:orange">C</span></mark>T</span></u>-3'</p> |
− |
| + | |
| </div> | | </div> |
| </div> | | </div> |
| </div> | | </div> |
| <div class="card"> | | <div class="card"> |
− | <a data-toggle="collapse" data-parent="#collapseOne" href="#gRNADes"> | + | <a data-toggle="collapse" href="#gRNADes"> <!--data-parent="#collapseOne"--> |
| <div class="card-header"> | | <div class="card-header"> |
| <h4 class="card-link"> | | <h4 class="card-link"> |
− | Design of gRNAs after new theory | + | Design of gRNAs after new hypothesis |
| </h4> | | </h4> |
| </div> | | </div> |
Line 907: |
Line 899: |
| <p class="lead">Halfway through our project (see <a href="https://2018.igem.org/Team:EPFL/Notebook-Detection"><span style="color:blue">Notebook</span></a> for more details), after starting testing our amplicons with Cas12a and the fluorescent reporter (DNase Alert), we realized that the probe itself (more specifically the product of RCA in the absence of miRNA, i.e. with no amplicon) was triggering the Cas system causing a very high fluorescence signal, comparable to the signal obtained for the samples with miRNA (i.e. with probe+amplicon).</p> | | <p class="lead">Halfway through our project (see <a href="https://2018.igem.org/Team:EPFL/Notebook-Detection"><span style="color:blue">Notebook</span></a> for more details), after starting testing our amplicons with Cas12a and the fluorescent reporter (DNase Alert), we realized that the probe itself (more specifically the product of RCA in the absence of miRNA, i.e. with no amplicon) was triggering the Cas system causing a very high fluorescence signal, comparable to the signal obtained for the samples with miRNA (i.e. with probe+amplicon).</p> |
| <br> | | <br> |
− | <p class="lead">We hypothesized that this was due to the fact the our Cas12a was working PAM-independently (more details in "New theory on Cas12a activation - miRNA" in the "Fluorescence readout" section). More specifically, our gRNA was meant to target the whole stem (and in addition 7 bases in the small loop) of the amplicon; since the stem is double-stranded, the target sequence for the gRNA is also present in the probe (in the opposite strand).</p> | + | <p class="lead">We hypothesized that this was due to the fact the our Cas12a was working PAM-independently (more details in "Promiscuous Cas12a activation: probes as a target" in <a href="https://2018.igem.org/Team:EPFL/Results"><span style="color:blue">Results</span></a>). More specifically, our gRNA was meant to target the whole stem (and in addition 7 bases in the small loop) of the amplicon; since the stem is double-stranded, the target sequence for the gRNA is also present in the probe (in the opposite strand).</p> |
| <p class="lead">This would not have been a problem if the Cas had been working, as expected, PAM-dependently, because the PAM is only contained in the amplicon, not in the probe. Nonetheless, if the Cas does not need the PAM sequence, but simple recognizes a target from the sequence of the gRNA, then also the probe itself is recognized as a target. Moreover, since the concentration of the probe in the RCA reaction is higher than the expected concentration of amplicon, the signal from the probe behaves as noise, overcoming the signal of interest (i.e. from the amplicon).</p> | | <p class="lead">This would not have been a problem if the Cas had been working, as expected, PAM-dependently, because the PAM is only contained in the amplicon, not in the probe. Nonetheless, if the Cas does not need the PAM sequence, but simple recognizes a target from the sequence of the gRNA, then also the probe itself is recognized as a target. Moreover, since the concentration of the probe in the RCA reaction is higher than the expected concentration of amplicon, the signal from the probe behaves as noise, overcoming the signal of interest (i.e. from the amplicon).</p> |
| <br> | | <br> |
Line 917: |
Line 909: |
| <p class="lead">5'-(UAAUUUCUACUAAGUGUAGAU)UAAAGGGAGUCGGCGG-3' [<b>gRNA sequence - L_1</b>]</p> | | <p class="lead">5'-(UAAUUUCUACUAAGUGUAGAU)UAAAGGGAGUCGGCGG-3' [<b>gRNA sequence - L_1</b>]</p> |
| <br> | | <br> |
− | <p class="lead">The comparison between the mode of action of the previous, original gRNA and the "new" ones is better explained in the figure below:</p> | + | <p class="lead">The comparison between the mode of action of the previous, original gRNA and the "new" ones is better explained in Figure 12:</p> |
| <center> | | <center> |
| <figure> | | <figure> |
| <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c2/T--EPFL--comparison_crRNA.png" class="img-fluid rounded" width="1000"> | | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c2/T--EPFL--comparison_crRNA.png" class="img-fluid rounded" width="1000"> |
− | <figcaption class="mt-3 text-muted">Comparison of the interaction between the gRNA and the amplicon for the three different gRNAs we investigated</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 12.</b> Comparison of the interaction between the gRNA and the amplicon for the three different gRNAs we investigated</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 936: |
Line 928: |
| </div> | | </div> |
| | | |
− |
| + | |
| </p> | | </p> |
| </div> | | </div> |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
− |
| + | |
| <br> | | <br> |
| <h1 id="Cas12aAssay">Our detection scheme</h1> | | <h1 id="Cas12aAssay">Our detection scheme</h1> |
− | <p class="lead">We envision a follow-up based on repeated liquid biopsies in order to track the sequences that have been identified using our bioinformatic software, amplified by either PCR, isothermal amplification or RCA, and finally detected directly in the plasma using our Cas12a based system.</p> | + | <p class="lead">We envision a follow-up based on repeated liquid biopsies in order to track the sequences that have been identified using our bioinformatic software, amplified by either PCR, isothermal amplification or RCA, and finally detected directly in the plasma using our Cas12a based system.</p> |
− |
| + | |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/6/64/T--EPFL--FromBloodTo.png" class="img-fluid rounded" width="800" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/8/85/T--EPFL--DetectionScheme.png" class="img-fluid rounded" width="800" > |
− | <figcaption class="mt-3 text-muted">Representation of our detection scheme: from a single drop of blood we collect the plasma in which reside our biomarkers, ctDNA and miRNAs. Depending on the follow-up assay (vaccine monitoring or relapse detection), we will amplify specific target sequences that we will detect afterwards using our Cas12a assay.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 13.</b> Representation of our detection scheme: from a single drop of blood we collect the plasma in which reside our biomarkers, ctDNA and miRNAs. Depending on the follow-up assay (vaccine monitoring or relapse detection), we will amplify specific target sequences that we will detect afterwards using our Cas12a assay.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
Line 955: |
Line 947: |
| <center> | | <center> |
| <figure> | | <figure> |
− | <img alt="Image" src="https://static.igem.org/mediawiki/2018/c/c8/T--EPFL--GraphDetection.png" class="img-fluid rounded" width="800" > | + | <img alt="Image" src="https://static.igem.org/mediawiki/2018/7/7d/T--EPFL--ctDNAconcentration.png" class="img-fluid rounded" width="800" > |
− | <figcaption class="mt-3 text-muted">Example of the use of biomarkers as a means of prognosis on the health of a patient with melanoma. In this case, the patient receives our vaccine as a treatment, and we assume that the treatment worked. This would be marked by a decrease in the concentration of ctDNA characteristic of the neoantigens targeted by our vaccine, ideally until their complete eradication. The condition of the patient stabilizes for a certain amount of time but it still ends up in relapse, which is nonetheless promptly marked by an increase of chromosomal rearrangements ctDNA fragments in the blood.</figcaption> | + | <figcaption class="mt-3 text-muted"><b>Figure 14.</b> Example of the use of biomarkers as a means of prognosis on the health of a patient with melanoma. In this case, the patient receives our vaccine as a treatment, and we assume that the treatment worked. This would be marked by a decrease in the concentration of ctDNA characteristic of the neoantigens targeted by our vaccine, ideally until their complete eradication. The condition of the patient stabilizes for a certain amount of time but it still ends up in relapse, which is nonetheless promptly marked by an increase of chromosomal rearrangements ctDNA fragments in the blood.</figcaption> |
| </figure> | | </figure> |
| </center> | | </center> |
− |
| + | |
| <hr style="height:2px;border:none;color:#333;background-color:#333;" /> | | <hr style="height:2px;border:none;color:#333;background-color:#333;" /> |
| | | |
− |
| + | |
− |
| + | |
− | <article> | + | <article> |
− | <h2><i><u>References</u></i></h2> | + | <h2><i><u>References</u></i></h2> |
− | <ol> | + | <ul> |
− | <li id="Zetsche2017">Zetsche, Bernd, et al. "Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array." <i>Nature biotechnology</i>, 35.1 (2017): 31. </li> | + | <li id="Abe2003">Abe, Kenji. "Direct PCR from Serum." <i>PCR Protocols</i>. Humana Press, 2003. 161-166.</li> |
− | <li id="Olsson2015">Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. <i>EMBO Mol Med</i>, 7, 1034–1047 (2015).</li> | + | <li id="Ali">Ali, M. Monsur, et al. "Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine." <i>Chemical Society Reviews</i>, 43.10 (2014): 3324-3341.</li> |
− | <li id="Calapre2017">Calapre, Leslie, et al. "Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma." <i>Cancer letters</i>, 404 (2017): 62-69.</li>
| + | |
− | <li id="Heitzer2017">Heitzer, Ellen, et al. "The potential of liquid biopsies for the early detection of cancer." <i>NPJ precision oncology</i>, 1.1 (2017): 36.</li>
| + | |
− | <li id="sgRNASynth">"sgRNA Synthesis Using the HiScribe™ Quick T7 High Yield RNA Synthesis Kit" - New England BioLabs website. URL:https://international.neb.com/protocols/2015/11/24/sgrna-synthesis-using-the-hiscribe-quick-t7-high-yield-rna-synthesis-kit-neb-e2050 (Accessed 14/10/2018)</li>
| + | |
| <li id="Baklanov1996">Baklanov, Michail M., Larisa N. Golikova, and Enrst G. Malygin. "Effect on DNA transcription of nucleotide sequences upstream to T7 promoter." <i>Nucleic acids research</i>, 24.18 (1996): 3659-3660.</li> | | <li id="Baklanov1996">Baklanov, Michail M., Larisa N. Golikova, and Enrst G. Malygin. "Effect on DNA transcription of nucleotide sequences upstream to T7 promoter." <i>Nucleic acids research</i>, 24.18 (1996): 3659-3660.</li> |
− | <li id="Gootenberg2017">Gootenberg, Jonathan S., et al. "Nucleic acid detection with CRISPR-Cas13a/C2c2." <i>Science</i>, (2017): eaam9321.</li> | + | <li id="Calapre2017">Calapre, Leslie, et al. "Circulating tumor DNA (ctDNA) as a liquid biopsy for melanoma." <i>Cancer letters</i>, 404 (2017): 62-69.</li> |
− | <li id="Harris2016">Harris, Faye R., et al. "Quantification of somatic chromosomal rearrangements in circulating cell-free DNA from ovarian cancers." <i>Scientific reports</i>, 6 (2016): 29831.</li>
| + | |
− | <li id="Siegel2018">Siegel, R. L., Miller, K. D. and Jemal, A. "Cancer statistics, 2018." <i>CA: A Cancer Journal for Clinicians</i>, (2018) 68: 7-30.</li>
| + | |
− | <li id="Li2018">Li, Shi-Yuan, et al. "CRISPR-Cas12a-assisted nucleic acid detection." <i>Cell discovery</i>, 4.1 (2018): 20.</li>
| + | |
| <li id="Chen2018">Chen, Janice S., et al. "CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity." <i>Science</i>, 360.6387 (2018): 436-439.</li> | | <li id="Chen2018">Chen, Janice S., et al. "CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity." <i>Science</i>, 360.6387 (2018): 436-439.</li> |
| + | <li id="Cheng">Cheng, Yongqiang, et al. "Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification." <i>Angewandte Chemie International Edition</i>, 48.18 (2009): 3268-3272.</li> |
| + | <li id="Deng"> Deng, Ruijie, et al. "Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells." <i>Angewandte Chemie</i>, 126.9 (2014): 2421-2425.</li> |
| <li id="DNaseAlertIDT">"DNaseAlert™" - Integrated DNA Technologies website. URL: https://eu.idtdna.com/site/order/stock/index/alert (Accessed 16/10/2018).</li> | | <li id="DNaseAlertIDT">"DNaseAlert™" - Integrated DNA Technologies website. URL: https://eu.idtdna.com/site/order/stock/index/alert (Accessed 16/10/2018).</li> |
− | <li id="Abe2003">Abe, Kenji. "Direct PCR from Serum." <i>PCR Protocols</i>. Humana Press, 2003. 161-166.</li>
| |
− |
| |
− | <li id="Gray2015">Gray, Elin S., et al. "Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma." <i>Oncotarget</i>, 6.39 (2015): 42008.</li>
| |
− | <li id="Girotti2016">Girotti, Maria Romina, et al. "Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma." <i>Cancer discovery</i>, 6.3 (2016): 286-299.</li>
| |
− | <li id="Tsao2015">Tsao, Simon Chang-Hao, et al. "Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations." <i>Scientific reports</i>, 5 (2015): 11198.</li>
| |
− | <li id="Underhill2016">Underhill, Hunter R., et al. "Fragment length of circulating tumor DNA." <i>PLoS genetics</i>, 12.7 (2016): e1006162.</li>
| |
− |
| |
− | <li id="Mitchell">Mitchell, Patrick S., et al. "Circulating microRNAs as stable blood-based markers for cancer detection." <i>Proceedings of the National Academy of Sciences</i>, 105.30 (2008): 10513-10518.</li>
| |
| <li id="NebCas12a">"EnGen Lba Cas12a (Cpf1)" - New England BioLabs website. URL: https://international.neb.com/products/m0653-engen-lba-cas12a-cpf1#Product%20Information_Notes (Accessed 24/09/2018)</li> | | <li id="NebCas12a">"EnGen Lba Cas12a (Cpf1)" - New England BioLabs website. URL: https://international.neb.com/products/m0653-engen-lba-cas12a-cpf1#Product%20Information_Notes (Accessed 24/09/2018)</li> |
− | <li id="Miao">Miao, Peng, et al. "Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode." <i>Bioconjugate chemistry</i>, 26.3 (2015): 602-607.</li> | + | <li id="Girotti2016">Girotti, Maria Romina, et al. "Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma." <i>Cancer discovery</i>, 6.3 (2016): 286-299.</li> |
− | <li id="Cheng">Cheng, Yongqiang, et al. "Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification." <i>Angewandte Chemie International Edition</i>, 48.18 (2009): 3268-3272.</li> | + | <li id="Gootenberg2017">Gootenberg, Jonathan S., et al. "Nucleic acid detection with CRISPR-Cas13a/C2c2." <i>Science</i>, (2017): eaam9321.</li> |
− | <li id="Ali">Ali, M. Monsur, et al. "Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine." <i>Chemical Society Reviews</i>, 43.10 (2014): 3324-3341.</li> | + | <li id="Gray2015">Gray, Elin S., et al. "Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma." <i>Oncotarget</i>, 6.39 (2015): 42008.</li> |
− | <li id="Zipper">Zipper, Hubert, et al. "Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications." </i>Nucleic acids research</i>, 32.12 (2004): e103-e103</li> | + | <li id="Harris2016">Harris, Faye R., et al. "Quantification of somatic chromosomal rearrangements in circulating cell-free DNA from ovarian cancers." <i>Scientific reports</i>, 6 (2016): 29831.</li> |
− | <li id="SYBRG"> "SYBR Green II RNA Gel Stain" - Sigma-Aldrich. Datasheet. URL: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/2/s9305dat.pdf (Accessed 11/10/2018)</li>
| + | <li id="Heitzer2017">Heitzer, Ellen, et al. "The potential of liquid biopsies for the early detection of cancer." <i>NPJ precision oncology</i>, 1.1 (2017): 36.</li> |
− | <li id="Vitzthum">Vitzthum, Frank, et al. "A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system." <i>Analytical biochemistry</i>, 276.1 (1999): 59-64.</li> | + | |
| <li id="Larrea">Larrea, Erika, et al. "New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies." <i>International journal of molecular sciences</i>, 17.5 (2016): 627.</li> | | <li id="Larrea">Larrea, Erika, et al. "New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies." <i>International journal of molecular sciences</i>, 17.5 (2016): 627.</li> |
| + | <li id="Li2018">Li, Shi-Yuan, et al. "CRISPR-Cas12a-assisted nucleic acid detection." <i>Cell discovery</i>, 4.1 (2018): 20.</li> |
| + | <li id="Miao">Miao, Peng, et al. "Ultrasensitive detection of microRNA through rolling circle amplification on a DNA tetrahedron decorated electrode." <i>Bioconjugate chemistry</i>, 26.3 (2015): 602-607.</li> |
| <li id="Mirzaei">Mirzaei, Hamed, et al. "MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma." <i>European journal of cancer</i>, 53 (2016): 25-32.</li> | | <li id="Mirzaei">Mirzaei, Hamed, et al. "MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma." <i>European journal of cancer</i>, 53 (2016): 25-32.</li> |
− | <li id="SYBRGI"> "SYBR Green I nucleic acid gel stain" - Sigma-Aldrich. Datasheet. URL: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Datasheet/s9430dat.pdf (Accessed 11/10/2018) </li> | + | <li id="Mitchell">Mitchell, Patrick S., et al. "Circulating microRNAs as stable blood-based markers for cancer detection." <i>Proceedings of the National Academy of Sciences</i>, 105.30 (2008): 10513-10518.</li> |
− | <li id="Deng"> Deng, Ruijie, et al. "Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells." <i>Angewandte Chemie</i>, 126.9 (2014): 2421-2425.</li> | + | <li id="Olsson2015">Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. <i>EMBO Mol Med</i>, 7, 1034–1047 (2015).</li> |
| <li id="Qiu">Qiu, Xin-Yuan, et al. "Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9." <i>ACS synthetic biology</i>, 7.3 (2018): 807-813.</li> | | <li id="Qiu">Qiu, Xin-Yuan, et al. "Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9." <i>ACS synthetic biology</i>, 7.3 (2018): 807-813.</li> |
− | <li id="NUPACK">Zadeh, Joseph N., et al. "NUPACK: analysis and design of nucleic acid systems." <i>Journal of computational chemistry</i>, 32.1 (2011): 170-173.</li>
| |
− | <li id="Mfold">Zuker, Michael. "Mfold web server for nucleic acid folding and hybridization prediction." <i>Nucleic acids research</i>, 31.13 (2003): 3406-3415.</li>
| |
| <li id="RNAstructure">Reuter, Jessica S., and David H. Mathews. "RNAstructure: software for RNA secondary structure prediction and analysis." <i>BMC bioinformatics</i>, 11.1 (2010): 129.</li> | | <li id="RNAstructure">Reuter, Jessica S., and David H. Mathews. "RNAstructure: software for RNA secondary structure prediction and analysis." <i>BMC bioinformatics</i>, 11.1 (2010): 129.</li> |
| + | <li id="sgRNASynth">"sgRNA Synthesis Using the HiScribe™ Quick T7 High Yield RNA Synthesis Kit" - New England BioLabs website. URL:https://international.neb.com/protocols/2015/11/24/sgrna-synthesis-using-the-hiscribe-quick-t7-high-yield-rna-synthesis-kit-neb-e2050 (Accessed 14/10/2018)</li> |
| + | <li id="Siegel2018">Siegel, R. L., Miller, K. D. and Jemal, A. "Cancer statistics, 2018." <i>CA: A Cancer Journal for Clinicians</i>, (2018) 68: 7-30.</li> |
| + | <li id="SYBRGI"> "SYBR Green I nucleic acid gel stain" - Sigma-Aldrich. Datasheet. URL: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Datasheet/s9430dat.pdf (Accessed 11/10/2018) </li> |
| + | <li id="SYBRG"> "SYBR Green II RNA Gel Stain" - Sigma-Aldrich. Datasheet. URL: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Datasheet/2/s9305dat.pdf (Accessed 11/10/2018)</li> |
| + | <li id="Tsao2015">Tsao, Simon Chang-Hao, et al. "Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations." <i>Scientific reports</i>, 5 (2015): 11198.</li> |
| + | <li id="Underhill2016">Underhill, Hunter R., et al. "Fragment length of circulating tumor DNA." <i>PLoS genetics</i>, 12.7 (2016): e1006162.</li> |
| + | <li id="Vitzthum">Vitzthum, Frank, et al. "A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system." <i>Analytical biochemistry</i>, 276.1 (1999): 59-64.</li> |
| <li id="Xie">Xie, Kabin, and Yinong Yang. "RNA-guided genome editing in plants using a CRISPR–Cas system." <i>Molecular plant</i>, 6.6 (2013): 1975-1983.</li> | | <li id="Xie">Xie, Kabin, and Yinong Yang. "RNA-guided genome editing in plants using a CRISPR–Cas system." <i>Molecular plant</i>, 6.6 (2013): 1975-1983.</li> |
− | | + | <li id="NUPACK">Zadeh, Joseph N., et al. "NUPACK: analysis and design of nucleic acid systems." <i>Journal of computational chemistry</i>, 32.1 (2011): 170-173.</li> |
− | </ol> | + | <li id="Zetsche2017">Zetsche, Bernd, et al. "Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array." <i>Nature biotechnology</i>, 35.1 (2017): 31. </li> |
| + | <li id="Zipper">Zipper, Hubert, et al. "Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications." </i>Nucleic acids research</i>, 32.12 (2004): e103-e103</li> |
| + | <li id="Mfold">Zuker, Michael. "Mfold web server for nucleic acid folding and hybridization prediction." <i>Nucleic acids research</i>, 31.13 (2003): 3406-3415.</li> |
| + | </ul> |
| </article> | | </article> |
− |
| + | |
| </div> | | </div> |
| | | |