(19 intermediate revisions by 3 users not shown) | |||
Line 36: | Line 36: | ||
<p> Naturally, when there is a certain amount of HSL in the environment, HSL complex with afeR proteins and bind to afeR promoter which regulate positively the genes downstream (as shown on the Figure 1) and on that our sensing system relies to produce DspB and enterobactin.</p> | <p> Naturally, when there is a certain amount of HSL in the environment, HSL complex with afeR proteins and bind to afeR promoter which regulate positively the genes downstream (as shown on the Figure 1) and on that our sensing system relies to produce DspB and enterobactin.</p> | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive | + | <figure class="makeresponsive " style="margin-left: 20%; margin-right: 20%;width: 80%;"> |
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/2/2d/T--ECUST--QS_F1.png" |
class="zoom"> | class="zoom"> | ||
+ | <figcaption><b style="margin-left: 20%; margin-right: 20%;width: 80%;">The mechanism of quorum sensing</b></figcaption> | ||
</figure> | </figure> | ||
</div> | </div> | ||
Line 52: | Line 53: | ||
<h1 class="box-heading">4.Materials and Methods</h1> | <h1 class="box-heading">4.Materials and Methods</h1> | ||
<h2>4.1 HSL Transfer</h2> | <h2>4.1 HSL Transfer</h2> | ||
− | <p> HSL is produced by iron bacterias and realeased into the water environment. So the first step of our sensing is HSL transfering into our engineered E.coli from the water. And a passive transusion model is used for this process that the transfer rate of HSL can be described as this:</p> | + | <p> HSL is produced by iron bacterias and realeased into the water environment. So the first step of our sensing is HSL transfering into our engineered <i>E.coli</i> from the water. And a passive transusion model is used for this process that the transfer rate of HSL can be described as this:</p> |
<p>$$v_{diffuse,HSL,W-C}=K_{HSL,W-C}\left( \left[ HSL\right] _{W}-\left[ HSL\right] _{C}\right) $$</p> | <p>$$v_{diffuse,HSL,W-C}=K_{HSL,W-C}\left( \left[ HSL\right] _{W}-\left[ HSL\right] _{C}\right) $$</p> | ||
− | <p> • K<sub>HSL,W-C</sub> : transfer coefficient through the membrane (<sup>−1</sup>)</p> | + | <p> • K<sub>HSL,W-C</sub> : transfer coefficient through the membrane (s<sup>−1</sup>)</p> |
<p> • We can predict hao long our engineered bacteria would take to remove the biofilm and rust.</p> | <p> • We can predict hao long our engineered bacteria would take to remove the biofilm and rust.</p> | ||
<h2>4.2 AfeR-HSL Complexation</h2> | <h2>4.2 AfeR-HSL Complexation</h2> | ||
− | <p> AfeR is produced by engineered E.coli and functions in cell and its concentration is obtained approximating the number of protein per cell, using the E.coli concentration (cell/L) and the Avogadro number.</p> | + | <p> AfeR is produced by engineered <i>E.coli</i> and functions in cell and its concentration is obtained approximating the number of protein per cell, using the <i>E.coli</i> concentration (cell/L) and the Avogadro number.</p> |
<p>$$\left[ AfeR\right] _{C}=\left( Number of AfeR/cell\right) \cdot \dfrac {\left[ E.coli\right] }{N_{A}}$$</p> | <p>$$\left[ AfeR\right] _{C}=\left( Number of AfeR/cell\right) \cdot \dfrac {\left[ E.coli\right] }{N_{A}}$$</p> | ||
<p> The AfeR-HSL complexation is simply formed that way:</p> | <p> The AfeR-HSL complexation is simply formed that way:</p> | ||
Line 82: | Line 83: | ||
<p> The DspB transcription depends on the transcription rate of the strain and the length of the DspB gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | <p> The DspB transcription depends on the transcription rate of the strain and the length of the DspB gene. The Avogadro number is used to express the transcription velocity in molar concentration in one cell per time unit.</p> | ||
<p>$$v _{transcription,DspB mRNA}=\dfrac {DspB_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | <p>$$v _{transcription,DspB mRNA}=\dfrac {DspB_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | ||
− | <p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> | + | <p> • k<sub>transcript</sub> : <i>E.coli</i> transcription rate (nucleotides/s)</p> |
<p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | <p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | ||
<p> • DNA length (DspB): number of nucleotides on the DspB gene</p> | <p> • DNA length (DspB): number of nucleotides on the DspB gene</p> | ||
Line 91: | Line 92: | ||
<p> The DspB translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | <p> The DspB translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | ||
<p>$$v _{translation,DspB}=\dfrac {\left[ DspB mRNA\right] \cdot k_{translation}\cdot \left( Ribosomes/RNA\right) }{RNA length}$$</p> | <p>$$v _{translation,DspB}=\dfrac {\left[ DspB mRNA\right] \cdot k_{translation}\cdot \left( Ribosomes/RNA\right) }{RNA length}$$</p> | ||
− | <p> • k<sub>translation</sub> : E.coli translation rate (nucleotides/s)</p> | + | <p> • k<sub>translation</sub> : <i>E.coli</i> translation rate (nucleotides/s)</p> |
<p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | <p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | ||
<p> • RNA length (DspB): number of nucleotides on the DspB mRNA</p> | <p> • RNA length (DspB): number of nucleotides on the DspB mRNA</p> | ||
− | <p> • [DspB mRNA] : DspB mRNA concentration in one E.coli cell</p> | + | <p> • [DspB mRNA] : DspB mRNA concentration in one <i>E.coli</i> cell</p> |
<p> For the convenience of mathematical operation, we merge the ktranslation and Ribosomes/RNA and to a constant.</p> | <p> For the convenience of mathematical operation, we merge the ktranslation and Ribosomes/RNA and to a constant.</p> | ||
Line 132: | Line 133: | ||
<p>$$v_{transcription,EntE mRNA}=\dfrac {EntE_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | <p>$$v_{transcription,EntE mRNA}=\dfrac {EntE_{DNA/cell}\cdot k_{transcript}\cdot \left( RNA polymerase/gene\right) }{DNA length\cdot N_{A}\cdot V_{intracell}}$$</p> | ||
<p> • EntE <sub>DNA,/cell</sub> : number of EntE gene per cell</p> | <p> • EntE <sub>DNA,/cell</sub> : number of EntE gene per cell</p> | ||
− | <p> • k<sub>transcript</sub> : E.coli transcription rate (nucleotides/s)</p> | + | <p> • k<sub>transcript</sub> : <i>E.coli</i> transcription rate (nucleotides/s)</p> |
<p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | <p> • RNA polymerase/gene: number of RNA polymerase per gene</p> | ||
<p> • DNA length (EntE): number of nucleotides on the EntE gene</p> | <p> • DNA length (EntE): number of nucleotides on the EntE gene</p> | ||
Line 141: | Line 142: | ||
<p> The EntE translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | <p> The EntE translation depends on the translation rate of the strain, the mRNA length and the quantity of mRNA. The translation velocity is expressed in molar concentration in one cell per time unit.</p> | ||
<p>$$v_{translation,EntE}=\dfrac {\left[ EntE mRNA\right] \cdot k_{translation}\cdot \left( Ribosomes/RNA\right) }{RNA length}$$</p> | <p>$$v_{translation,EntE}=\dfrac {\left[ EntE mRNA\right] \cdot k_{translation}\cdot \left( Ribosomes/RNA\right) }{RNA length}$$</p> | ||
− | <p> • k<sub>translation</sub> : E.coli translation rate (nucleotides/s)</p> | + | <p> • k<sub>translation</sub> : <i>E.coli</i> translation rate (nucleotides/s)</p> |
<p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | <p> • Ribosomes/RNA: number of ribosomes per mRNA</p> | ||
<p> • RNA length (EntE): number of nucleotides on the EntE mRNA</p> | <p> • RNA length (EntE): number of nucleotides on the EntE mRNA</p> | ||
− | <p> • [EntE mRNA] : EntE mRNA concentration in one E.coli cell</p> | + | <p> • [EntE mRNA] : EntE mRNA concentration in one <i>E.coli</i> cell</p> |
<p> For the convenience of mathematical operation, we merge the k<sub>translation</sub> and Ribosomes/RNA and to a constant.</p> | <p> For the convenience of mathematical operation, we merge the k<sub>translation</sub> and Ribosomes/RNA and to a constant.</p> | ||
Line 158: | Line 159: | ||
<h2>4.6 Enterobactin Production</h2> | <h2>4.6 Enterobactin Production</h2> | ||
<h3>4.6.1 Enterobactin Production</h3> | <h3>4.6.1 Enterobactin Production</h3> | ||
− | <p> Enterobactin is produced by E.coli through the reaction catalyzed by EntE and is modeled assuming a Michaelis-Menten kinetics.</p> | + | <p> Enterobactin is produced by <i>E.coli</i> through the reaction catalyzed by EntE and is modeled assuming a Michaelis-Menten kinetics.</p> |
<p>$$v_{prod,EntE}=k_{cat,EntE}\cdot \left[ EntE\right] _{C}\cdot \dfrac {\left[ S\right] _{C}}{K_{M,E}+\left[ S\right] _{C}}\cdot V_{intracell}\cdot \left[ E.coli\right] $$</p> | <p>$$v_{prod,EntE}=k_{cat,EntE}\cdot \left[ EntE\right] _{C}\cdot \dfrac {\left[ S\right] _{C}}{K_{M,E}+\left[ S\right] _{C}}\cdot V_{intracell}\cdot \left[ E.coli\right] $$</p> | ||
− | <p> • [EntE]<sub>C</sub> : EntE enzyme concentration in one E.coli cell (mol/L)</p> | + | <p> • [EntE]<sub>C</sub> : EntE enzyme concentration in one <i>E.coli</i> cell (mol/L)</p> |
<p> • k <sub>cat,EntE</sub> : catalytic constant of the EntE enzyme (s<sup>−1</sup>)</p> | <p> • k <sub>cat,EntE</sub> : catalytic constant of the EntE enzyme (s<sup>−1</sup>)</p> | ||
<p> • [S]<sub>C</sub> : substrate concentration (mol/L)</p> | <p> • [S]<sub>C</sub> : substrate concentration (mol/L)</p> | ||
Line 196: | Line 197: | ||
<p> The system of ODEs was solved using Matlab R2016a. And we used the ode15s solver.</p> | <p> The system of ODEs was solved using Matlab R2016a. And we used the ode15s solver.</p> | ||
<p> The complete set of ODEs is detailed here:</p> | <p> The complete set of ODEs is detailed here:</p> | ||
+ | <p>$$\dfrac {d\left[ HSL\right] _{C}}{dt}=v_{diffuse,HSL,W-C}$$</p> | ||
+ | <p>$$\dfrac {d\left[ DspB-mRNA\right] _{C}}{dt}=v _{transcription,DspB mRNA}-v_{degradation,DspB mRNA}$$</p> | ||
+ | <p>$$\dfrac {d\left[ DspB\right] _{C}}{dt}=v _{translation,DspB}-v_{degradation,DspB}$$</p> | ||
+ | <p>$$\dfrac {d\left[ Biof\right]}{dt}=-v_{remo,biof}$$</p> | ||
+ | <p>$$\dfrac {d\left[ EntE mRNA\right] _{C}}{dt}=v _{transcription,EntE mRNA}-v_{degradation,EntE mRNA}$$</p> | ||
+ | <p>$$\dfrac {d\left[ EntE\right] _{C}}{dt}=v _{translation,EntE}-v_{degradation,EntE}$$</p> | ||
+ | <p>$$\dfrac {d\left[ Ent\right] _{C}}{dt}=v_{prod,Ent}$$</p> | ||
+ | <p>$$\dfrac {d\left[ Ent\right] _{W}}{dt}=v_{diffuse,Ent,C-W}$$</p> | ||
+ | <p>You can freely re-use our code:<a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/1/1e/T--ECUST--QS_IGEM-MATLAB.zip"><i>General_resolution + System_of_ODEs.</i></a><p> | ||
</div> | </div> | ||
Line 205: | Line 215: | ||
<h1 class="box-heading">6. Result</h1> | <h1 class="box-heading">6. Result</h1> | ||
<p> At the beginning of the project, we needed to know if our quorum sensing would work in practice and if the information transmission between the transerent modules was possible and sufficiently fast. We thus carried out simulations by solving the ODEs system to have a first estimation of the dynamics of our synthetic system.</p> | <p> At the beginning of the project, we needed to know if our quorum sensing would work in practice and if the information transmission between the transerent modules was possible and sufficiently fast. We thus carried out simulations by solving the ODEs system to have a first estimation of the dynamics of our synthetic system.</p> | ||
− | <p> The initial conditions, such as the concentrations of E.coli and HSL were set to biologically plausible values.</p> | + | <p> The initial conditions, such as the concentrations of <i>E.coli</i> and HSL were set to biologically plausible values.</p> |
<p> [HSL]<sub>W</sub> = 10<sup>-5</sup> mol/L</p> | <p> [HSL]<sub>W</sub> = 10<sup>-5</sup> mol/L</p> | ||
<p> [E.coli] = 1.66*10<sup>-12</sup> mol/L (10<sup>12</sup> cell/L, OD<sub>600</sub>=1.5)</p> | <p> [E.coli] = 1.66*10<sup>-12</sup> mol/L (10<sup>12</sup> cell/L, OD<sub>600</sub>=1.5)</p> | ||
Line 211: | Line 221: | ||
<p> [Rust]<sub>0</sub> = 1 (amount)</p> | <p> [Rust]<sub>0</sub> = 1 (amount)</p> | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="margin-left: 20%; margin-right: 20%;width: 80%;"> |
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/9/9f/T--ECUST--QS_F2.png" |
class="zoom"> | class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The variety of biofilm by modeling.</b></figcaption> | ||
</figure> | </figure> | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="margin-left: 20%; margin-right: 20%;width: 80%;"> |
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/b/b3/T--ECUST--QS_F3.png" |
class="zoom"> | class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The variety of rust by modeling.</b></figcaption> | ||
</figure> | </figure> | ||
− | <p> The model result shows that usinng our engineered E.coli to remove a certain amount of biofilm needs about | + | <p> The model result shows that usinng our engineered <i>E.coli</i> to remove a certain amount of biofilm needs about 5 days and to remove a certain amount of rust needs less than 4.5 days. The result is close to the real value which confirmes the feasibility of our project .</p> |
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="margin-left: 20%; margin-right: 20%;width: 80%;"> |
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/d/dd/T--ECUST--QS_F4.png" |
class="zoom"> | class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The variety of DspB\EntE\Ent\Ent-Fe3+ by modeling.</b></figcaption> | ||
</figure> | </figure> | ||
<p> This visual representation of the system's dynamics also allowed us to check that each variable evolves in a realistic range of concentrations, hence indicating the model predicts a consistent behavior.</p> | <p> This visual representation of the system's dynamics also allowed us to check that each variable evolves in a realistic range of concentrations, hence indicating the model predicts a consistent behavior.</p> | ||
Line 234: | Line 247: | ||
<h1 class="box-heading">7. Addendum</h1> | <h1 class="box-heading">7. Addendum</h1> | ||
<p> Data and Parameter:</p> | <p> Data and Parameter:</p> | ||
+ | <p><a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/7/76/T--ECUST--result--QUORUM_MODEL_constant.docx"><i>Click here to download the table.</i></a><p> | ||
</div> | </div> | ||
Line 241: | Line 255: | ||
<h1 class="box-heading">References</h1> | <h1 class="box-heading">References</h1> | ||
<p>1. QIAGEN, Origins of replication and copy numbers of various plasmids and cosmids In: Growth Of Bacterial Cultures, 2013 - 2017.</p> | <p>1. QIAGEN, Origins of replication and copy numbers of various plasmids and cosmids In: Growth Of Bacterial Cultures, 2013 - 2017.</p> | ||
− | <p>2. Esquerre T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal L, Genome-wide investigation of mRNA lifetime determinants in Escherichia coli cells cultured at different growth rates. BMC Genomics. 2015, 16, 275,</p> | + | <p>2. Esquerre T, Moisan A, Chiapello H, Arike L, Vilu R, Gaspin C, Cocaign-Bousquet M, Girbal L, Genome-wide investigation of mRNA lifetime determinants in <i>Escherichia coli</i> cells cultured at different growth rates. BMC Genomics. 2015, 16, 275,</p> |
<p>3. Li Y C, Zhu J R. Role of N-acyl homoserine lactone (HSL)-based quorum sensing (QS) in aerobic sludge granulation.[J]. Applied Microbiology & Biotechnology, 2014, 98(17):7623-7632.</p> | <p>3. Li Y C, Zhu J R. Role of N-acyl homoserine lactone (HSL)-based quorum sensing (QS) in aerobic sludge granulation.[J]. Applied Microbiology & Biotechnology, 2014, 98(17):7623-7632.</p> | ||
<p>4. Xiang Chen,Faming Zhu,Yunhe Cao,et al. Novel Expression Vector for Secretion of Cecropin AD in Bacillus subtilis with Enhanced Antimicrobial Activity[J]. Antimicrobial Agents and Chemotherapy,2009,53(9):3683-3689.</p> | <p>4. Xiang Chen,Faming Zhu,Yunhe Cao,et al. Novel Expression Vector for Secretion of Cecropin AD in Bacillus subtilis with Enhanced Antimicrobial Activity[J]. Antimicrobial Agents and Chemotherapy,2009,53(9):3683-3689.</p> |
Latest revision as of 23:38, 17 October 2018