Universeson (Talk | contribs) |
|||
(24 intermediate revisions by 3 users not shown) | |||
Line 36: | Line 36: | ||
<h1 class="box-heading">1.Sensor model</h1> | <h1 class="box-heading">1.Sensor model</h1> | ||
<h2>1.1 Introduction</h2> | <h2>1.1 Introduction</h2> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/3/34/T--ECUST--fur-model_F1.jpg" alt="figure 1" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Sensing system strength through reporter gene detection</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<p>We first modeled the sensing system using ODEs with the help of experimental results to determine one of our parameters ki1.We had three kinds of fur-box designs. We model our three kinds of fur-box (shown in the figure 2) to find the optimal fur-box and the strength of the promoter with the best kind of fur-box. We finally corrected our model through the experiments. We make this framework like figure 1.</p> | <p>We first modeled the sensing system using ODEs with the help of experimental results to determine one of our parameters ki1.We had three kinds of fur-box designs. We model our three kinds of fur-box (shown in the figure 2) to find the optimal fur-box and the strength of the promoter with the best kind of fur-box. We finally corrected our model through the experiments. We make this framework like figure 1.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/4/49/T--ECUST--fur_model_F2.jpg" alt="figure 2" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Three kinds of fur-box designs</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<h2>1.2 Methods and materials:</h2> | <h2>1.2 Methods and materials:</h2> | ||
<h3>1.2.1 The dynamic simulation of sense iron to FBS:</h3> | <h3>1.2.1 The dynamic simulation of sense iron to FBS:</h3> | ||
Line 68: | Line 82: | ||
<p>We want to know the fittest ki1 for the model to sense the iron and the concentrate of iron. | <p>We want to know the fittest ki1 for the model to sense the iron and the concentrate of iron. | ||
We make three kinds of fur-box for our sensor system. We want to know which is our best choice. Our experiment result show in the figure 3. </p> | We make three kinds of fur-box for our sensor system. We want to know which is our best choice. Our experiment result show in the figure 3. </p> | ||
− | < | + | <figure> |
− | + | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/c/c0/T--ECUST--fur_model_F3.jpg" alt="figure 3" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Our three-fur-box sensor experiment</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | <p>Then we try to change the value of K<sub>i1</sub> to model different strength of promoter with fur-box in our experiment which show in the figure 4. We want our system to make sense in the high level of Fe<sup>2+</sup>, so we choose the fur-2 system. And we finally set the KI1:7.4*10<sup>-4</sup>. </p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/5/55/T--ECUST--fur_model_F4.jpg" alt="figure 4" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The ki1 change to model</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
Line 84: | Line 109: | ||
<p>We make the system framework shown in the figure 5. We built the inverter system using lacI-lacO on the basis of sensor model to determine the concentrate of cecropin AD and the need of time.</p> | <p>We make the system framework shown in the figure 5. We built the inverter system using lacI-lacO on the basis of sensor model to determine the concentrate of cecropin AD and the need of time.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/61/T--ECUST--fur_model_F5.jpg" alt="figure 5" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The sensor and inverter system</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | |||
<h2>2.2 Methods and materials:</h2> | <h2>2.2 Methods and materials:</h2> | ||
<h3>2.2.1 The dynamic simulation of inverter model:</h3> | <h3>2.2.1 The dynamic simulation of inverter model:</h3> | ||
Line 102: | Line 135: | ||
FBS and Mcherryexpressed are both ruled by a normal logistic function. If we were to track the number of expressed LacI or Mcherry, we would be using two inverted logistic fuctions to model a double inverter. Since FBS represents the number of repressed genes and Mcherryexpressed the number of expressed genes, the double inverter is still there. Finally we equate the concentration of Mcherry to the concentration of cecropin AD. | FBS and Mcherryexpressed are both ruled by a normal logistic function. If we were to track the number of expressed LacI or Mcherry, we would be using two inverted logistic fuctions to model a double inverter. Since FBS represents the number of repressed genes and Mcherryexpressed the number of expressed genes, the double inverter is still there. Finally we equate the concentration of Mcherry to the concentration of cecropin AD. | ||
</p> | </p> | ||
+ | <p>Mcherry Production: </p> | ||
+ | <p>The [mRNA] and [Mcherry] equations are alike. The prodction rates are K<sub>r<sub> for the mRNA and K<sub>m<sub> for the Mcherry. Since FBS represents the number of inhibited Fur Binding Sites, we have to substract it from N<sub>pla1</sub> </p> | ||
+ | <p>The equations of mRNA and Mcherry: </p> | ||
+ | <p>$$\dfrac {d\left[ mRNA\right] }{dt}=Mcherry_{expressed}\cdot K_{r}-D_{mRNA}\cdot \left[ mRNA\right] $$</p> | ||
+ | <p>$$\dfrac {d\left[ Mcherry\right] }{dt}=K_{m}\cdot \left[ mRNA\right] -D_{Mchery}\cdot \left[ Mcherry\right] $$ </p> | ||
+ | <p>• Km : translation rate of Mcherry (min<sup>-1</sup>)</p> | ||
+ | <p>• DMcherry : Mcherry degradation rate (min<sup>-1</sup>) </p> | ||
+ | <h2>2.3 Result:</h2> | ||
+ | <p>“How much concentration of the cecropin AD can we produce in our bacteria?”</p> | ||
+ | <p>In order to answer the question, we make the genes in the Pet-28a plasmid. So, we know the N<sub>pla1</sub> and N<sub>pla2</sub> parameters access to literatures which set it 400.</p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/be/T--ECUST--fur_model_F6.jpg" alt="figure 6" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Cecropin AD produced with time</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | <p>We try to made our sensor and inverter system work in our bacteria.And we get the value of the K<sub>i2</sub> by the experiment of Mcherry expression. Finally, we set K<sub>i2</sub> at 25 to model our system. </p> | ||
+ | <p>As shown in the figure 6, there is a significant result which tell us the bacteria produce cecropin AD at the concentration of iron with time. </p> | ||
+ | </div> | ||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">3 Sterilizing system</h1> | ||
+ | <h2>3.1 Introduction</h2> | ||
+ | <p>We model the sterilize system with the help of experiment: We tested the death time curves of <i>iron bacteria</i> with different concentrations of cecropin AD. This can help us analyze the amount of cecropin AD required.</p> | ||
+ | <p>The cecropin AD which show in the figure 7 can lyse bacteria to kill <i>iron bacteria</i>. The cecropin AD has α helix. It can insert in to the bacteria.</p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/bc/T--ECUST--fur_model_F7.jpg" alt="figure 7" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The cecropin AD</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | <p>We need to know the titer of the cecropin AD produced by our bacteria. So we conducted a sterilization experiment. </p> | ||
+ | <h2>3.2 Methods and Materials:</h2> | ||
+ | <p>We make the dynamic simulation of the sterilizing: </p> | ||
+ | <p>$$V_{death-ironbacteria}=\dfrac {\left[ cecropin\right] }{\left[ cecropin\right] +IC50_{ironbacteria}}\cdot K_{ki}\cdot \left[ ironbacteria\right]$$ </p> | ||
+ | <h2>3.3 Result:</h2> | ||
+ | <p>We conducted a standardized experiment to determine the MIC of cecropin AD. We set the MIC:4*10<sup>-5</sup>M. </p> | ||
+ | <p>Then we have plotted the death curve of <i>iron bacteria</i> at different concentrations of the cecropin AD show in the figure 8. </p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/4/40/T--ECUST--fur_model_F8.jpg" alt="figure 8" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>the death curve of <i>iron bacteria</i> at different concentrations of the cecropin AD</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">4 the chelator system</h1> | ||
+ | <h2>4.1 Introduction</h2> | ||
+ | <p>As a final step, we combined the sensor and inverter model and an sterilizing model to annswer this final question:</p> | ||
+ | |||
+ | <p>"How much time is needed for our bacteria to sterilize the <i>iron bacteria</i> from the moment they sense the iron?"</p> | ||
+ | <p>This include the sensor and inverter system and sterilizing system leading to a double inverter and sterilize the <i>iron bacteria</i>. </p> | ||
+ | <h2>4.2 Result</h2> | ||
+ | <p>We plotted the time curve of <i>iron bacteria</i> concentration, iron concentration, and cecropin AD concentration. We focus on the time when the <i>iron bacteria</i> become little so we translate these concentrate to proportion. The result show in the figure 9. It can be seen from the figure 9 that the bacteria were completely killed after about 9000 minutes.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 30%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/02/T--ECUST--fur_model_F9.jpg" alt="figure 9" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The time curve of <i>iron bacteria</i> proportion, iron proportion, and cecropin AD proportion.</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | <p>We want to know the accurate time which our system make sense. We focus on the initial concentration change time curve which show in the figure 10. It can be seen from the figure 10 that the cell death starts from about 75 minutes.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 42%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/5/53/T--ECUST--fur_model_F10.jpg" alt="figure 10" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>the curve of time from 0 to 200 min.</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">5 The model result:</h1> | ||
+ | |||
+ | |||
+ | <p>We finally can determine the time our system need from our model. Our system has a 75 minute delay start time. The total work completion time is 9000 minutes. This bacteria can remove rust within seven days.</p> | ||
+ | <p>You can freely re-use our code:<a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/1/1b/T--ECUST--fur_model_python.zip"><i>fur-sensor and inverter system model by python.</i></a><p> | ||
+ | |||
+ | |||
+ | </div> | ||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">6 Appendix:</h1> | ||
+ | <p><a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/8/86/T--ECUST--result--fur-inverter_constant.docx"><i>Click here to download the table.</i></a><p> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <div class="contentbox"> | ||
+ | <h1 class="box-heading">7.References:</h1> | ||
+ | <p>1. QIAGEN, Origins of replication and copy numbers of various plasmids and cosmids In: Growth Of Bacterial Cultures, 2013 - 2017.</p> | ||
+ | <p>2. 高朝贤, 郑浩渠, 惠长野,等. 红色荧光蛋白变种mCherry的表达、纯化和应用探讨[J]. 国际生物制品学杂志, 2017, 40(1):31-35.</p> | ||
+ | <p>3. 高朝贤, 郑浩渠, 惠长野,等. 红色荧光蛋白变种mCherry的表达、纯化和应用探讨[J]. 国际生物制品学杂志, 2017, 40(1):31-35.</p> | ||
+ | <p>4. 张惠展. 基因工程概论[M]. 华东理工大学出版社, 2001.</p> | ||
+ | <p>5. 朱玉贤, 李毅, 郑晓峰. 现代分子生物学[M]. 高等教育出版社, 2013.</p> | ||
+ | <p>6. 戚以政, 夏杰, 王炳武. 生物反应工程[M]. 化学工业出版社, 2009.</p> | ||
</div> | </div> |
Latest revision as of 23:41, 17 October 2018