(13 intermediate revisions by 2 users not shown) | |||
Line 38: | Line 38: | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> |
<img src="https://static.igem.org/mediawiki/2018/3/34/T--ECUST--fur-model_F1.jpg" alt="figure 1" class="zoom"> | <img src="https://static.igem.org/mediawiki/2018/3/34/T--ECUST--fur-model_F1.jpg" alt="figure 1" class="zoom"> | ||
− | <figcaption><b>Sensing system strength through reporter gene detection</b></figcaption> | + | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Sensing system strength through reporter gene detection</b></figcaption> |
</figure> | </figure> | ||
</figure> | </figure> | ||
Line 46: | Line 46: | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> |
<img src="https://static.igem.org/mediawiki/2018/4/49/T--ECUST--fur_model_F2.jpg" alt="figure 2" class="zoom"> | <img src="https://static.igem.org/mediawiki/2018/4/49/T--ECUST--fur_model_F2.jpg" alt="figure 2" class="zoom"> | ||
− | <figcaption><b>Three kinds of fur-box designs</b></figcaption> | + | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Three kinds of fur-box designs</b></figcaption> |
</figure> | </figure> | ||
</figure> | </figure> | ||
Line 82: | Line 82: | ||
<p>We want to know the fittest ki1 for the model to sense the iron and the concentrate of iron. | <p>We want to know the fittest ki1 for the model to sense the iron and the concentrate of iron. | ||
We make three kinds of fur-box for our sensor system. We want to know which is our best choice. Our experiment result show in the figure 3. </p> | We make three kinds of fur-box for our sensor system. We want to know which is our best choice. Our experiment result show in the figure 3. </p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/c/c0/T--ECUST--fur_model_F3.jpg" alt="figure 3" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Our three-fur-box sensor experiment</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<p>Then we try to change the value of K<sub>i1</sub> to model different strength of promoter with fur-box in our experiment which show in the figure 4. We want our system to make sense in the high level of Fe<sup>2+</sup>, so we choose the fur-2 system. And we finally set the KI1:7.4*10<sup>-4</sup>. </p> | <p>Then we try to change the value of K<sub>i1</sub> to model different strength of promoter with fur-box in our experiment which show in the figure 4. We want our system to make sense in the high level of Fe<sup>2+</sup>, so we choose the fur-2 system. And we finally set the KI1:7.4*10<sup>-4</sup>. </p> | ||
+ | <figure> | ||
− | + | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | |
− | + | <img src="https://static.igem.org/mediawiki/2018/5/55/T--ECUST--fur_model_F4.jpg" alt="figure 4" class="zoom"> | |
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The ki1 change to model</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
Line 98: | Line 109: | ||
<p>We make the system framework shown in the figure 5. We built the inverter system using lacI-lacO on the basis of sensor model to determine the concentrate of cecropin AD and the need of time.</p> | <p>We make the system framework shown in the figure 5. We built the inverter system using lacI-lacO on the basis of sensor model to determine the concentrate of cecropin AD and the need of time.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/61/T--ECUST--fur_model_F5.jpg" alt="figure 5" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The sensor and inverter system</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
+ | |||
<h2>2.2 Methods and materials:</h2> | <h2>2.2 Methods and materials:</h2> | ||
<h3>2.2.1 The dynamic simulation of inverter model:</h3> | <h3>2.2.1 The dynamic simulation of inverter model:</h3> | ||
Line 126: | Line 145: | ||
<p>“How much concentration of the cecropin AD can we produce in our bacteria?”</p> | <p>“How much concentration of the cecropin AD can we produce in our bacteria?”</p> | ||
<p>In order to answer the question, we make the genes in the Pet-28a plasmid. So, we know the N<sub>pla1</sub> and N<sub>pla2</sub> parameters access to literatures which set it 400.</p> | <p>In order to answer the question, we make the genes in the Pet-28a plasmid. So, we know the N<sub>pla1</sub> and N<sub>pla2</sub> parameters access to literatures which set it 400.</p> | ||
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/be/T--ECUST--fur_model_F6.jpg" alt="figure 6" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>Cecropin AD produced with time</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<p>We try to made our sensor and inverter system work in our bacteria.And we get the value of the K<sub>i2</sub> by the experiment of Mcherry expression. Finally, we set K<sub>i2</sub> at 25 to model our system. </p> | <p>We try to made our sensor and inverter system work in our bacteria.And we get the value of the K<sub>i2</sub> by the experiment of Mcherry expression. Finally, we set K<sub>i2</sub> at 25 to model our system. </p> | ||
<p>As shown in the figure 6, there is a significant result which tell us the bacteria produce cecropin AD at the concentration of iron with time. </p> | <p>As shown in the figure 6, there is a significant result which tell us the bacteria produce cecropin AD at the concentration of iron with time. </p> | ||
Line 133: | Line 159: | ||
<h1 class="box-heading">3 Sterilizing system</h1> | <h1 class="box-heading">3 Sterilizing system</h1> | ||
<h2>3.1 Introduction</h2> | <h2>3.1 Introduction</h2> | ||
− | <p>We model the sterilize system with the help of experiment: We tested the death time curves of iron bacteria with different concentrations of cecropin AD. This can help us analyze the amount of cecropin AD required.</p> | + | <p>We model the sterilize system with the help of experiment: We tested the death time curves of <i>iron bacteria</i> with different concentrations of cecropin AD. This can help us analyze the amount of cecropin AD required.</p> |
− | <p>The cecropin AD which show in the figure 7 can lyse bacteria to kill iron bacteria. The cecropin AD has α helix. It can insert in to the bacteria.</p> | + | <p>The cecropin AD which show in the figure 7 can lyse bacteria to kill <i>iron bacteria</i>. The cecropin AD has α helix. It can insert in to the bacteria.</p> |
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/bc/T--ECUST--fur_model_F7.jpg" alt="figure 7" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The cecropin AD</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<p>We need to know the titer of the cecropin AD produced by our bacteria. So we conducted a sterilization experiment. </p> | <p>We need to know the titer of the cecropin AD produced by our bacteria. So we conducted a sterilization experiment. </p> | ||
<h2>3.2 Methods and Materials:</h2> | <h2>3.2 Methods and Materials:</h2> | ||
Line 143: | Line 176: | ||
<p>We conducted a standardized experiment to determine the MIC of cecropin AD. We set the MIC:4*10<sup>-5</sup>M. </p> | <p>We conducted a standardized experiment to determine the MIC of cecropin AD. We set the MIC:4*10<sup>-5</sup>M. </p> | ||
− | <p>Then we have plotted the death curve of iron bacteria at different concentrations of the cecropin AD show in the figure 8. </p> | + | <p>Then we have plotted the death curve of <i>iron bacteria</i> at different concentrations of the cecropin AD show in the figure 8. </p> |
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 40%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/4/40/T--ECUST--fur_model_F8.jpg" alt="figure 8" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>the death curve of <i>iron bacteria</i> at different concentrations of the cecropin AD</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
</div> | </div> | ||
Line 153: | Line 192: | ||
<p>As a final step, we combined the sensor and inverter model and an sterilizing model to annswer this final question:</p> | <p>As a final step, we combined the sensor and inverter model and an sterilizing model to annswer this final question:</p> | ||
− | <p>"How much time is needed for our bacteria to sterilize the iron bacteria from the moment they sense the iron?"</p> | + | <p>"How much time is needed for our bacteria to sterilize the <i>iron bacteria</i> from the moment they sense the iron?"</p> |
− | <p>This include the sensor and inverter system and sterilizing system leading to a double inverter and sterilize the iron bacteria. </p> | + | <p>This include the sensor and inverter system and sterilizing system leading to a double inverter and sterilize the <i>iron bacteria</i>. </p> |
<h2>4.2 Result</h2> | <h2>4.2 Result</h2> | ||
− | <p>We plotted the time curve of iron bacteria concentration, iron concentration, and cecropin AD concentration. We focus on the time when the iron bacteria become little so we translate these concentrate to proportion. The result show in the figure 9. It can be seen from the figure 9 that the bacteria were completely killed after about 9000 minutes.</p> | + | <p>We plotted the time curve of <i>iron bacteria</i> concentration, iron concentration, and cecropin AD concentration. We focus on the time when the <i>iron bacteria</i> become little so we translate these concentrate to proportion. The result show in the figure 9. It can be seen from the figure 9 that the bacteria were completely killed after about 9000 minutes.</p> |
+ | <figure> | ||
+ | |||
+ | <figure class="makeresponsive floatleft" style="margin-left: 30%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/0/02/T--ECUST--fur_model_F9.jpg" alt="figure 9" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>The time curve of <i>iron bacteria</i> proportion, iron proportion, and cecropin AD proportion.</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
<p>We want to know the accurate time which our system make sense. We focus on the initial concentration change time curve which show in the figure 10. It can be seen from the figure 10 that the cell death starts from about 75 minutes.</p> | <p>We want to know the accurate time which our system make sense. We focus on the initial concentration change time curve which show in the figure 10. It can be seen from the figure 10 that the cell death starts from about 75 minutes.</p> | ||
+ | <figure> | ||
+ | <figure class="makeresponsive floatleft" style="margin-left: 42%; margin-right: 20%;width: 80%;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/5/53/T--ECUST--fur_model_F10.jpg" alt="figure 10" class="zoom"> | ||
+ | <figcaption><b margin-left: 20%; margin-right: 20%;width: 80%;>the curve of time from 0 to 200 min.</b></figcaption> | ||
+ | </figure> | ||
+ | </figure> | ||
Line 167: | Line 219: | ||
<p>We finally can determine the time our system need from our model. Our system has a 75 minute delay start time. The total work completion time is 9000 minutes. This bacteria can remove rust within seven days.</p> | <p>We finally can determine the time our system need from our model. Our system has a 75 minute delay start time. The total work completion time is 9000 minutes. This bacteria can remove rust within seven days.</p> | ||
− | + | <p>You can freely re-use our code:<a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/1/1b/T--ECUST--fur_model_python.zip"><i>fur-sensor and inverter system model by python.</i></a><p> | |
Line 173: | Line 225: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
<h1 class="box-heading">6 Appendix:</h1> | <h1 class="box-heading">6 Appendix:</h1> | ||
− | + | <p><a target="_blank" style="color:white; text-decoration:underline;" href="https://static.igem.org/mediawiki/2018/8/86/T--ECUST--result--fur-inverter_constant.docx"><i>Click here to download the table.</i></a><p> | |
Latest revision as of 23:41, 17 October 2018