|
|
Line 17: |
Line 17: |
| <link rel="stylesheet" type="text/css" href="..\CSS-files\page_picture.css" /> | | <link rel="stylesheet" type="text/css" href="..\CSS-files\page_picture.css" /> |
| <link rel="stylesheet" type="text/css" href="..\CSS-files\fix_code.css" /> --> | | <link rel="stylesheet" type="text/css" href="..\CSS-files\fix_code.css" /> --> |
| + | |
| <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:H14Z1_Hangzhou/CSS-files/global?action=raw&ctype=text/css" /> | | <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:H14Z1_Hangzhou/CSS-files/global?action=raw&ctype=text/css" /> |
| <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:H14Z1_Hangzhou/CSS-files/footer?action=raw&ctype=text/css" /> | | <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:H14Z1_Hangzhou/CSS-files/footer?action=raw&ctype=text/css" /> |
Line 28: |
Line 29: |
| <script type="text/javascript" src="https://2018.igem.org/Team:H14Z1_Hangzhou/JS-files/menu?action=raw&ctype=text/javascript"></script> | | <script type="text/javascript" src="https://2018.igem.org/Team:H14Z1_Hangzhou/JS-files/menu?action=raw&ctype=text/javascript"></script> |
| <script type="text/javascript" src="https://2018.igem.org/Team:H14Z1_Hangzhou/JS-files/footer?action=raw&ctype=text/javascript"></script> | | <script type="text/javascript" src="https://2018.igem.org/Team:H14Z1_Hangzhou/JS-files/footer?action=raw&ctype=text/javascript"></script> |
| + | |
| + | |
| | | |
| </head> | | </head> |
Line 36: |
Line 39: |
| | | |
| <div class="content"> | | <div class="content"> |
− | <img src="https://static.igem.org/mediawiki/2018/c/c1/T--H14Z1_Hangzhou--head_Description.jpg" alt="" class="head_div_img" /> | + | <img src="https://static.igem.org/mediawiki/2018/f/fd/T--H14Z1_Hangzhou--head_Design.png" alt="" class="head_div_img" /> |
| <div class="content_box"> | | <div class="content_box"> |
− | <h1 class="content_title">Description</h1> | + | <h1 class="content_title">Design</h1> |
| <div class="content_conts"> | | <div class="content_conts"> |
| <!------------------------Liver function and protection------------------------------ --> | | <!------------------------Liver function and protection------------------------------ --> |
− | <h3 class="content_subtitle">Liver function and protection</h3> | + | <h6 class="content_sub_subtitle">Design and integration of three different modules (gshF, met K and |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | cwaA)</h6> |
− | Good health is dependent upon proper liver function. The liver is a huge chemical plant of the
| + | <p><img style="width: 70%; margin-top: 3em" src="https://static.igem.org/mediawiki/2018/4/41/T--H14Z1_Hangzhou--project_design_fig1.png"></p> |
− | human body. It has many major functions as shown in Fig.1. In the daily life, as shown in
| + | |
− | Fig.2, there are many reasons which overload liver to disease. Liver disease can be divided
| + | <h6 class="content_sub_subtitle">Functional characterization of pNZ-SGC in L. lactis NZ9000</h6> |
− | into viral liver and non viral liver diseases. Non viral liver diseases consist of alcoholic
| + | <p><img style="width: 70%; margin-top: 3em" src="https://static.igem.org/mediawiki/2018/e/e8/T--H14Z1_Hangzhou--project_design_fig2.png"></p> |
− | liver, drug or toxic liver disease, metabolic abnormal liver disease, fatty liver, etc. | + | |
− | </p>
| + | |
− | <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/7/7b/T--H14Z1_Hangzhou--description_background_fig1.jpg"></p> | + | |
− | <p class="mt8 content_context" style="text-align:center; font-size: 18px">
| + | |
− | Liver functions
| + | |
− | </p>
| + | |
− | <p><img style="width: 50%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/7/72/T--H14Z1_Hangzhou--description_fig2.png"></p>
| + | |
− | <p class="mt8 content_context" style="text-align:center; font-size: 18px">
| + | |
− | Daily life overloads liver leading to liver diseases
| + | |
− | </p> | + | |
− | <p class="content_context" style="margin:20px; text-align: center; font-size: 20px"><a style="text-decoration: none"
| + | |
− | href="https://www.clinicians.co.nz/">https://www.clinicians.co.nz/</a></p>
| + | |
− | <!-- ------------------------Protection agents---------------------------- -->
| + | |
− | <h3 class="content_subtitle">Protection agents</h3>
| + | |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | |
− | Liver disease is a common disease with great danger. And the incidence rate in East Asia is
| + | |
− | higher than the average in the world. Scientists have made great efforts to prevent or treat it
| + | |
− | by hepatitis virus vaccine inoculation, clinic operation, and medicine administration, etc. At
| + | |
− | present oral administration of two protective drugs (glutathione and S-adenosyl methionine) is
| + | |
− | very effective against a variety of liver diseases in hospital.
| + | |
− | </p>
| + | |
− | <!-- -------------------------Glutathione --------------------------- -->
| + | |
− | <h6 class="content_sub_subtitle">Glutathione</h6>
| + | |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | |
− | Glutathione (GSH) is biosynthesized from glutamic acid, cysteine and glycine, and distributes
| + | |
− | in many organs in human body, especially in the liver where the highest concentration of GSH
| + | |
− | exists. GSH plays an important role in liver biochemical metabolism. The liver therapeutical
| + | |
− | effects of glutathione are listed in the following:
| + | |
− | </p>
| + | |
− | <div style="padding-left: 100px">
| + | |
− | <ul style="font-size:16px; line-height: 30px !important">
| + | |
− | <li>Inhibit the formation of fatty liver.</li>
| + | |
− | <li>Directly antagonize the toxicity of oxygen free radicals.</li>
| + | |
− | <li>Preventing hepatocyte injury.</li>
| + | |
− | <li>Treatment of fulminant hepatic failure caused by drug poisoning.</li>
| + | |
− | </ul>
| + | |
− | </div>
| + | |
− | <p><img style="width: 70%; margin-top: 1em" src="https://static.igem.org/mediawiki/2018/0/03/T--H14Z1_Hangzhou--description_background_fig3.png"></p> | + | |
− | <p class="mt8 content_context" style="text-align:center">
| + | |
− | <span style="margin-left:-50px; margin-right:200px">Glutathione</span><span>S-adenosyl
| + | |
− | methionine</span>
| + | |
− | </p>
| + | |
− | <p class="mt8 content_context" style="text-align:center">
| + | |
− | Fig.3 Molecule structures of GSH and SAM
| + | |
− | </p>
| + | |
− | <!-- ------------------------S-adenosyl methionine---------------------------- -->
| + | |
− | <h6 class="content_sub_subtitle">S-adenosyl methionine</h6>
| + | |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | |
− | S-adenosyl methionine (SAM) is an important intermediate product in liver metabolism. As a
| + | |
− | methyl donor and a precursor of physiological sulfhydryl compounds, SAM participates in
| + | |
− | important metabolic reactions in vivo. The liver therapeutical effects of SAM are listed in the
| + | |
− | following:
| + | |
− | </p>
| + | |
− | <div class="content_context" style="padding:0px 100px 0px 100px; text-align: justify">
| + | |
− | <ul style="font-size:16px">
| + | |
− | <li>Delay the need for liver transplantation and reduce mortality in patients with
| + | |
− | alcoholic cirrhosis in a 24-month trial.</li>
| + | |
− | <li>Significantly increase hepatic glutathione levels in nonalcoholic liver disease with
| + | |
− | oral administration of 1200mg SAM daily<br>
| + | |
− | (J Hepatol 1999, 30(6) 1081-1089).
| + | |
− | </li>
| + | |
− | </ul>
| + | |
− | </div>
| + | |
− | <!-- -----------------------Bacterial drug delivery system----------------------------- -->
| + | |
− | <h3 class="content_subtitle">Bacterial drug delivery system</h3>
| + | |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | |
− | Oral administration is the most attractive option for drug delivery due to convenience of
| + | |
− | administration, patient acceptance, and long-term compliance. However, this strategy is not
| + | |
− | feasible for many drugs, especially peptide or protein drugs, due to poor biochemical stability
| + | |
− | (degradation and denaturation) in the harsh gastrointestinal environment (Fig.3) and low
| + | |
− | epithelial permeability. Synthetic cell therapy is a field that has broad potential for future
| + | |
− | applications in human disease treatment. In vivo synthesis and delivery via cell therapy has
| + | |
− | several important advantages over traditional oral systemic treatment.
| + | |
− | </p>
| + | |
− | <div class="content_context" style="padding:0px 100px 0px 100px;">
| + | |
− | <ul style="font-size:16px">
| + | |
− | <li>The required dosage is reduced by several orders of magnitude.</li>
| + | |
− | <li>The route of administration is less invasive than intravenous or subcutaneous
| + | |
− | injection.</li>
| + | |
− | <li>Multiple therapeutic agents can be produced by the same cell simultaneously.</li>
| + | |
− | <li>No need for purification and formulation of the active compound.</li>
| + | |
− | </ul>
| + | |
− | </div>
| + | |
− | <h3 class="content_subtitle">Our objective</h3>
| + | |
− | <p class="content_context" style="text-indent:2em; text-align:justify">
| + | |
− | <i>Lactococcus lactis</i> is one of the most common organisms used in bacterial drug delivery system.
| + | |
− | <i>Lactococcus lactis</i> is a food-grade bacterium that is widely used in the dairy industry. It is a
| + | |
− | Gram-positive bacterium and therefore lacks endotoxic lipopolysaccharides (LPS) which are
| + | |
− | associated with commonly used Gram-negative bacteria. It is also non-invasive and non-commensal
| + | |
− | and thus has less potential to trigger immunotolerance or side effects upon prolonged use. The
| + | |
− | bacterium has an established safety profile through its long use in fermented dairy products
| + | |
− | and is considered as a GRAS (generally recognized as safe) microorganism. During the last two
| + | |
− | decades, significant advances have been made in the field of <i>lactococcal</i> genetics and protein
| + | |
− | expression systems. The most commonly used system is the nisin-controlled gene expression
| + | |
− | (NICE) system, containing the nisin promoter.
| + | |
− | </p>
| + | |
| | | |
− | <p class="content_context" style="text-indent:2em; text-align:justify"> | + | <h6 class="content_sub_subtitle">Production of “smart yogurt” with our constructed L. lactis |
− | In the present project, since the oral table administration of GSH and SAM have some | + | NZ9000/pNZ-GMcA</h6> |
− | disadvantages, such as low stability and short life span, here we tried to develop a novel
| + | <p><img style="width: 70%; margin-top: 3em" src="https://static.igem.org/mediawiki/2018/6/65/T--H14Z1_Hangzhou--project_design_fig3.png"></p> |
− | in-vivo strategy of produce and deliver them simultaneously by using NICE system. In the
| + | <p class="content_context" style="text-align:center; font-size:18px"> |
− | experiment, two-functional GSH synthetase gene (<i>gshF</i>) and SAM synthetase gene (<i>metK</i>) were in
| + | (adapted from <a style="text-decoration: none; font-size: 18px"href="https://www.nyas.org/ebriefings/cytokine-therapies/">https://www.nyas.org/ebriefings/cytokine-therapies/)</a> |
− | tandem inserted into the expression vector (pNZ8148), and the resulted plasmid (pNZ8148-SG) was
| + | |
− | employed to construct the target vector pNZ8148-SGC by introducing adhesion factor gene (<i>cwaA</i>).
| + | |
− | This target vector was transformed to get recombinant <i>Lactococcus lacti</i>, which was employed to
| + | |
− | produce our “smart yogurt”.
| + | |
| </p> | | </p> |
| </div> | | </div> |