(18 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{IISER-Bhopal-India}} | {{IISER-Bhopal-India}} | ||
<html> | <html> | ||
+ | |||
+ | |||
<section id="featured" class="bg"> | <section id="featured" class="bg"> | ||
<div class="container"> | <div class="container"> | ||
Line 8: | Line 10: | ||
<div id="main-slider" class="main-slider flexslider"> | <div id="main-slider" class="main-slider flexslider"> | ||
<ul class="slides"> | <ul class="slides"> | ||
− | + | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | |
+ | <li> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/8/8a/T--IISER-Bhopal-India--slidermethfinal1.png" alt="" /> | ||
</li> | </li> | ||
− | + | ||
− | <img src="https://static.igem.org/mediawiki/2018/ | + | |
− | < | + | <li><a href="https://2018.igem.org/Team:IISER-Bhopal-India/Idea"> |
− | + | <img src="https://static.igem.org/mediawiki/2018/a/a8/T--IISER-Bhopal-India--methslider2final.png" alt="" /> | |
− | + | </a> | |
− | + | </li> | |
− | </ | + | <li><a href="https://2018.igem.org/Team:IISER-Bhopal-India/approach"> |
+ | <img src="https://static.igem.org/mediawiki/2018/8/80/T--IISER-Bhopal-India--sliderfrick.png" alt="" /> | ||
+ | </a> | ||
+ | </li> | ||
+ | |||
+ | <li><a href="https://2018.igem.org/Team:IISER-Bhopal-India/Results"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/6/66/T--IISER-Bhopal-India--slidermethfinal4.png" alt="" /> | ||
+ | </a> | ||
</li> | </li> | ||
− | <li> | + | <li><a href="https://2018.igem.org/Team:IISER-Bhopal-India/Prospects"> |
− | <img src="https://static.igem.org/mediawiki/2018/ | + | <img src="https://static.igem.org/mediawiki/2018/4/4e/T--IISER-Bhopal-India--batmanslider.png" alt="" /> |
− | + | </a> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</li> | </li> | ||
+ | |||
</ul> | </ul> | ||
</div> | </div> |
Latest revision as of 00:37, 18 October 2018
Overview
Methane is a growing concern in today's scenario and green methods are desired for its real-time monitoring. Thus, we have developed the prototype of a robust field-applicable methane biosensor, MethNote. We found an enzyme-complex methane monooxygenase(MMO) from Methylococcus capsulatus, a methanotrophic bacterium, that converts methane to methanol. We expressed soluble-MMO in the methylotrophic yeast, Pichia pastoris, which harbors a plasmid expressing the reporter gene under a methanol inducible promoter AOX. Thus, linking methane uptake to a reporter gene expression generates the proposed methane biosensor. The inclusion of sMMO pathway was also checked by metabolic modeling. The constructed part will be a useful contribution to the iGEM repository. A commercial design of MethNote will find widespread applications in environmental monitoring of methane. In future studies, we also anticipate an additional application of Mut- strain of P. pastoris expressing sMMO in biofuel production through methanol sequestration.