Difference between revisions of "Team:AHUT China/design"

 
(47 intermediate revisions by 4 users not shown)
Line 21: Line 21:
 
      
 
      
 
         <!--================Header Area =================-->
 
         <!--================Header Area =================-->
         <header class="header_area">
+
          
 +
        <!--================Header Area =================-->
 +
              <header class="header_area">
 
             <div class="container">
 
             <div class="container">
 
                 <nav class="navbar navbar-expand-lg navbar-light">
 
                 <nav class="navbar navbar-expand-lg navbar-light">
 
                     <!-- Brand and toggle get grouped for better mobile display -->
 
                     <!-- Brand and toggle get grouped for better mobile display -->
                     <a class="navbar-brand logo_h" href="https://2018.igem.org/Team:AHUT_China/home"><img src="https://static.igem.org/mediawiki/2018/e/ec/T--AHUT_China--_logo.jpg" height="100" width="80" alt=""></a>
+
                     <a class="navbar-brand logo_h" href="https://2018.igem.org/Team:AHUT_China/home"><img src="https://static.igem.org/mediawiki/2018/b/b0/T--AHUT_China--_newlogo.jpg" height="110" width="80" alt=""></a>
 
                     <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
 
                     <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
 
                         <span class="icon-bar"></span>
 
                         <span class="icon-bar"></span>
Line 34: Line 36:
 
                     <div class="collapse navbar-collapse offset" id="navbarSupportedContent">
 
                     <div class="collapse navbar-collapse offset" id="navbarSupportedContent">
 
                         <ul class="nav navbar-nav menu_nav ml-auto">
 
                         <ul class="nav navbar-nav menu_nav ml-auto">
                             <li class="nav-item active"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li>  
+
                             <li class="nav-item "><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/home">Home</a></li>  
 
                             <li class="nav-item submenu dropdown">
 
                             <li class="nav-item submenu dropdown">
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">TEAM</a>
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">TEAM</a>
Line 41: Line 43:
 
">Team Members</a></li>
 
">Team Members</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Attributions">Attribution</a>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Attributions">Attribution</a>
<li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Sponsoring">Sponsoring</a></li>
+
 
                                 </ul>
 
                                 </ul>
 
                             </li>  
 
                             </li>  
 
                             <li class="nav-item submenu dropdown">
 
                             <li class="nav-item submenu dropdown">
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a>
+
                                 <a href="#" style="color:#52C5FD" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">PROJECT</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Overview">Overview</a></li>
 +
                                    <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Background">Background</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/protocol">Protocol</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/protocol">Protocol</a></li>
 
                                     <li class="nav-item"><a class="nav-link"
 
                                     <li class="nav-item"><a class="nav-link"
href="https://2018.igem.org/Team:AHUT_China/design">Design</a></li>
+
href="https://2018.igem.org/Team:AHUT_China/design">Design</a></li>                                                    
                                    <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Background">Background</a></li>
+
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Demonstrate">Demonstrate</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Demonstrate">Demonstrate</a></li>
<li class="nav-item"><a class="nav-link" href="
+
    <li class="nav-item"><a class="nav-link" href="
https://2018.igem.org/Team:AHUT_China/InterLab">Our lab</a></li>
+
https://2018.igem.org/Team:AHUT_China/InterLab">Interlab</a></li>
 +
                                    <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Notebook">Notebook</a></li>
 +
                                    <li class="nav-item"><a class="nav-link"
 +
href="https://2018.igem.org/Team:AHUT_China/Result">Result</a></li>
 
                                   </li>
 
                                   </li>
 
                                 </ul>
 
                                 </ul>
Line 70: Line 75:
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Human Practices</a>
 
                                 <a href="#" class="nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Human Practices</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Human_Practices">HP</a></li>
+
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/Human_Practices">Overview</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/HP_FOR_SILVER">HP for Silver</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/HP_FOR_SILVER">HP for Silver</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li>
 
                                     <li class="nav-item"><a class="nav-link" href="https://2018.igem.org/Team:AHUT_China/INTEGRATED_FOR_GOLD">Integrated HP for gold</a></li>
 +
                                    <li class="nav-item"><a class="nav-link" href="
 +
https://2018.igem.org/Team:AHUT_China/Public_Engagement">Public Engagement</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>  
 
                             </li>  
Line 83: Line 90:
 
            
 
            
 
         </header>
 
         </header>
 +
       
 +
       
 
         <br><br><br> <br><br><br>  
 
         <br><br><br> <br><br><br>  
 
         <!--================Header Area =================-->
 
         <!--================Header Area =================-->
Line 90: Line 99:
 
         <!--================Breadcrumb Area =================-->
 
         <!--================Breadcrumb Area =================-->
 
         <!--================ Latest Blog Area  =================-->
 
         <!--================ Latest Blog Area  =================-->
        <section class="latest_blog_area section_gap">
+
          <section class="latest_blog_area section_gap">
 
             <div class="container">
 
             <div class="container">
 
               <div class="section_title ">
 
               <div class="section_title ">
                <div align="center"> <h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Introduction</h2></div>
+
                      <div align="center"><h2>Design</h2></div>
                   <p>We took part in the Fifth International InterLab Measurement Study which ains to achieve the purpose of comparative measurement. The goal of this study is to obtain large amounts of data from labs across the world,to develop absolute units for measurements GFP in a plate reader to eliminate variation between labs.</p><br>
+
<hr>
<div align="center"><h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Materials</h2></div>
+
                    
                  <p>Plate reader: Synergy H1 (Biotek)<br>
+
 
Plate reader plates: Corning 3603 96-Well Microplates (black plates with clear flat bottom)<br>
+
                  <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >As we have described in the background, traditional CO<span style="font-size: 13px">2</span> capture technology is still in its early stages and is often characterized by high energy consumption and low efficiency. The goal of the project is to develop a new kind of low energy, high efficiency and environmentally friendly CO<span style="font-size: 13px">2</span> capture method. Based on this goal, we intend to use human carbonic anhydrase 2 (CA2) as the research object, because CA2 can efficiently catalyze CO<span style="font-size: 13px">2</span> hydration to produce HCO<span style="font-size: 13px">3</span><sup>-</sup> (Fig. 1), which can achieve efficient capture of CO<span style="font-size: 13px">2</span>, however, the enzyme has the fastest reaction rate at 37 °C and is inactivated at 50 °C, which is not suitable for industrial applications of large-scale CO<span style="font-size: 13px">2</span> capture. Therefore, we plan to obtain engineered CA2 mutants with high thermal stability by using genetic engineering technology, laying the foundation for subsequent industrial applications. The overall design for our project is as follows (Fig. 2).</p>
Cell culture shaker: ZWYR-200D<br><br>
+
<br><br><br>
Devices:<br>
+
<div align="center"><img src="
Negative control :BBa_R0040 <br>
+
https://static.igem.org/mediawiki/2018/e/ed/T--AHUT_China--_design333.jpg" width="750" alt=""/></div>
Positive control :BBa_I20270 <br>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 14px;text-align: center;">Fig. 1 The catalytic mechanism of CA2 </p>  <br><br><br>
Device 1: BBa_J364000  <br>
+
<div align="center"><img src="
Device 2: BBa_J364001  <br>
+
https://static.igem.org/mediawiki/2018/8/8b/T--AHUT_China--_liucheng.jpg" width="650" alt=""/></div>
Device 3: BBa_J364002  <br>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆';  font-size: 14px;text-align: center;">Fig. 2 The overall design model for our project </p>  <br><br><br><br>
Device 4: BBa_J364007  <br>
+
<h3>The detailed design procedure is described as follows:</h3><br>
Device 5: BBa_J364008  <br>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >1. Established the design principles of carbonic anhydrase 2 (CA2)
Device 6: BBa_J364009  <br>
+
With the help of computer-aided analysis software Discovery Visual Studio, we established the design principles of CA2 to predict the ideal mutation sites for this protein:
Note: for Device 5, we have not transformed it into DH5⍺ competent cells successfully for many times, therefore, we thank IGEM team of Nanjing University for providing the Device 5.<br>
+
</p>
Calibration material: Provided in the 2018 IGEM distribution kit <br>
+
<br>
Microorganism: Escherichia coli DH5⍺ strains<br>
+
                  <p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >1) Maintain the 3D structure of enzyme; <br><br>
</p><br>
+
2) Modify the interactions between residues around active sites; <br><br>
<div align="center"><h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Methods</h2></div>
+
3) Improve the rigidity of active sites; <br><br>
                  <p>Following iGEM requirements, Team AHUT_China performed measurements according to these 2018 InterLab Protocols <a href="https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf">https://static.igem.org/mediawiki/2018/0/09/2018_InterLab_Plate_Reader_Protocol.pdf</a> </p><br>
+
4) Shorten the distance of proton transfer.<br><br>
<div align="center"><h2 class="title_color">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Results</h2></div>
+
</p>
                  <h4>1.OD 600 reference point</h4><p>
+
 
Using OD 600 and H2O to generate the conversion factor for the transformation later. The average of OD600 is 0.063; the correction factor (OD600/ABS600) is 3.500
+
 
</p><br>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >
  <div align="center"><img src="https://static.igem.org/mediawiki/2018/c/cb/T--AHUT_China--_LUDOX_correct_result.jpg" width="317" height="234" alt=""/></div><br><div align="center">Fig. 1 LUDOX correct value
+
2. Molecular docking of enzyme-substrate.<br><br>
  </div>
+
Molecular docking with Autodock was performed to investigate the docking conformation of the substrate at the catalytic site and to analyze the interaction between the residues at the catalytic site and the substrate. Effects of the secondary and tertiary structure of the catalytic sites on the catalytic process were further investigated by using Autodock and Discovery Visual Studio. The mutation sites and substitution residues were set, and then the molecular docking of the recombinase was carried out to compare the enzyme-substrate docking conformation before and after recombination. Suitable mutation sites and replacement residues were selected to improve their catalytic properties.
  <h4>2.Particle standard curve</h4>
+
</p>
                  <p>
+
<br><br>
We obtained the two Particle Standard Curve (normal and log scale).
+
  </p><br>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >
  <div align="center"><img src="https://static.igem.org/mediawiki/2018/6/65/T--AHUT_China--_Fig._2_Particle_Standard_Curve.jpg" width="701" height="440" alt=""/></div><br><div align="center">Fig. 2 Particle Standard Curve
+
3. Enzyme-solvent kinetics simulation.<br><br>
  </div>
+
Kinetic simulation was conducted by Gromacs software to investigate the conformation of the enzyme under aqueous solvent conditions at normal/high temperature conditions and to analyze the root mean square fluctuation of its individual residues. According to the results above, unstable residues were chosen to mutate, and the advanced structure of the enzyme and its rheology before and after recombination were further compared by Gromacs and Discovery Visual Studio software, then suitable mutation sites and replacement residues were selected to improve their stability.
<div align="center"><img src="https://static.igem.org/mediawiki/2018/7/7e/T--AHUT_China--_Fig._3_Particle_Standard_Curve_%28log_scale%29.jpg" width="701" height="440" alt=""/></div><br><div align="center">
+
</p>
  Fig. 3 Particle Standard Curve (log scale)  
+
<br><br>
</div>
+
<h4>3.Fluorescein standard curve</h4><p>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >
Dilution serious of fluorescein were prepared and measured in a 96 well plate. A standard curve is generated to correct the cell based readings to an equivalent fluorescein concentration.<br>
+
4. Construction of vectors<br><br>
We obtained the two Fluorescein Standard Curve (normal and log scale).
+
Next, we are preparing to construct wild-type and mutant CA2 prokaryotic expression vectors by using genetic engineering technology. The coding sequences of CA2-WT and mutant CA2 were both optimized and synthesized, then cloned into the expression vector pET-30a(+), respectively. The correctness of the obtained recombinant vectors were identified by restriction enzyme digestion and sequencing.
</p><br>
+
</p>
 
+
<br><br>
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/24/T--AHUT_China--_Fig._4_Fluorescein_Standard_Curve.jpg" width="701" height="440" alt=""/></div><br><div align="center">
+
  Fig. 4 Fluorescein Standard Curve
+
</div>
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--AHUT_China--_Fig._5_Fluorescein_Standard_Curve_%28log_scale%29.jpg" width="701" height="440" alt=""/></div><br><div align="center">
+
  <div align="center" >Fig. 5 Fluorescein Standard Curve (log scale) </div>
+
</div>
+
 
 
  <h4>4.Cell measurements</h4>
+
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >
  </ol>
+
5. Expression and purification of proteins<br><br>
<p>&nbsp;</p><br>
+
Then, we induce the expression of wild-type and mutant CA2 protein in E.coli BL21 (DE3) with isopropyl-1-thio-β-Dgalactopyrasonide (IPTG) induction. Briefly, recombinant plasmids of the wild-type and mutant CA2 were transformed into E. coli BL21 (DE3) and positive clones were screened by kanamycin resistance. Then, the recombinant E. coli BL21 (DE3) were propagated and its expression was induced with IPTG. Cells were lysed by sonication on ice, and the obtained crude extracts were centrifuged to separate supernatant and debris, and both fractions were subjected to SDS-PAGE and Western Blot.<br><br>
 
+
After confirming that wild-type and mutant CA2 could be expressed in our chassis E. coli BL21 (DE3), protein of wild-type and mutant CA2 were further purified with nickel column for the following CO2 capture.  
<div align="center"><img src="https://static.igem.org/mediawiki/2018/2/21/T--AHUT_China--_Fig._6_Fluorescence_Measurements_Curve_.jpg" width="732" height="492" alt=""/></div><br><div align="center">
+
  <div align="center">Fig. 6 Fluorescence Measurements Curve</div>
+
</div>
+
    <p>Test devices 1 and 4 show high fluorescence intensity. Test devices 2 show a modest fluorescence intensity alone with positive control group, while devices3,5,6 barely show low fluorescence intensity alone with the negative control group.
+
</p><br>
+
 
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/3/36/T--AHUT_China--_Fig._7_Raw_OD600_Curve_.jpg" width="724" height="484" alt=""/></div><br><div align="center">
+
  <div align="center">Fig. 7 Raw OD600 Curve</div>
+
</div>
+
    <h4>5.We obtained the Colony Forming Units per 0.1 OD600 E. coli cultures</h4>  
+
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/f1/T--AHUT_China--_Fig._8_CFU_Result.jpg" width="724" height="420" alt=""/></div><br>
+
    <div align="center"><img src="https://static.igem.org/mediawiki/2018/e/e5/T--AHUT_China--_Fig._8_CFU_Result1.jpg" width="732" height="492" alt=""/></div><br>
+
    <div align="center">
+
  <div align="center" >Fig. 8 CFU Result</div>
+
  <p >&nbsp;</p>
+
<div align="center"><h2 class="title_color">Discussion</h2></div>
+
                <p>For Figure 3, the log graph isn’t a straight line but not 1:1 slope. In figure 6, highest fluorescence was obtained from device 4, closely followed by test device 1. Test device 2 and positive control group show a modest fluorescence intensity and device 5,6 show low fluorescence intensity, while test devices 3 barely have any fluorescence signal as well as the negative group.  
+
</p>            
+
<div align="center"><h2 class="title_color">Conclusion</h2></div>
+
                <p>It was certainly a technical challenge to Participate in the InterLab Study. Performing the prescribed protocols with adherence to all the InterLab guidelines yielded parts of expected results, and with the completed InterLab Google Forms, confirms our team participation in this InterLab Study.
+
 
  </p>
 
  </p>
               
+
<br><br>
                 
+
 +
<p style="font-family: 'Arial Unicode MS', 'Microsoft YaHei UI', 'Microsoft YaHei UI Light', '华文细黑', '微软雅黑', '幼圆'; font-size: 18px;" >
 +
6. Identification of the function<br><br>
 +
In order to verify the function of the mutant protein, we prepared the colorimetric or esterase method to measure the Km and Vmax value of the wild-type and mutant CA2, and compare the thermostability of the two proteins by esterase method. Finally, we determine whether the activity of the mutant protein changes and whether the thermal stability is significantly improved.
 +
</p>
 
             </div>
 
             </div>
 
           </div>
 
           </div>
 
             </div>
 
             </div>
 
         </section>
 
         </section>
 +
<br><br><br><br><br>
 
         <!--================ Recent Area  =================-->
 
         <!--================ Recent Area  =================-->
 
          
 
          
Line 177: Line 165:
 
          
 
          
 
         <!--================ start footer Area  =================-->
 
         <!--================ start footer Area  =================-->
        <DIV style="background: rgba(1,1,1,1.00)"><div align="center"><video height="200px" width="800px" controls="controls"><source src="https://static.igem.org/mediawiki/2018/9/91/T--AHUT_China--_foot.mp4" type="video/mp4" ></div>
+
   
                  <br></div>
+
     
+
  
 
         <!-- Modals error -->
 
         <!-- Modals error -->
Line 238: Line 224:
 
</script>
 
</script>
 
</html>
 
</html>
 +
{{:Team:AHUT_China/footer}}
 +
{{:Team:AHUT_China/footercss}}

Latest revision as of 01:39, 18 October 2018

Royal Hotel Royal Hotel







Design


As we have described in the background, traditional CO2 capture technology is still in its early stages and is often characterized by high energy consumption and low efficiency. The goal of the project is to develop a new kind of low energy, high efficiency and environmentally friendly CO2 capture method. Based on this goal, we intend to use human carbonic anhydrase 2 (CA2) as the research object, because CA2 can efficiently catalyze CO2 hydration to produce HCO3- (Fig. 1), which can achieve efficient capture of CO2, however, the enzyme has the fastest reaction rate at 37 °C and is inactivated at 50 °C, which is not suitable for industrial applications of large-scale CO2 capture. Therefore, we plan to obtain engineered CA2 mutants with high thermal stability by using genetic engineering technology, laying the foundation for subsequent industrial applications. The overall design for our project is as follows (Fig. 2).




Fig. 1 The catalytic mechanism of CA2




Fig. 2 The overall design model for our project





The detailed design procedure is described as follows:


1. Established the design principles of carbonic anhydrase 2 (CA2) With the help of computer-aided analysis software Discovery Visual Studio, we established the design principles of CA2 to predict the ideal mutation sites for this protein:


1) Maintain the 3D structure of enzyme;

2) Modify the interactions between residues around active sites;

3) Improve the rigidity of active sites;

4) Shorten the distance of proton transfer.

2. Molecular docking of enzyme-substrate.

Molecular docking with Autodock was performed to investigate the docking conformation of the substrate at the catalytic site and to analyze the interaction between the residues at the catalytic site and the substrate. Effects of the secondary and tertiary structure of the catalytic sites on the catalytic process were further investigated by using Autodock and Discovery Visual Studio. The mutation sites and substitution residues were set, and then the molecular docking of the recombinase was carried out to compare the enzyme-substrate docking conformation before and after recombination. Suitable mutation sites and replacement residues were selected to improve their catalytic properties.



3. Enzyme-solvent kinetics simulation.

Kinetic simulation was conducted by Gromacs software to investigate the conformation of the enzyme under aqueous solvent conditions at normal/high temperature conditions and to analyze the root mean square fluctuation of its individual residues. According to the results above, unstable residues were chosen to mutate, and the advanced structure of the enzyme and its rheology before and after recombination were further compared by Gromacs and Discovery Visual Studio software, then suitable mutation sites and replacement residues were selected to improve their stability.



4. Construction of vectors

Next, we are preparing to construct wild-type and mutant CA2 prokaryotic expression vectors by using genetic engineering technology. The coding sequences of CA2-WT and mutant CA2 were both optimized and synthesized, then cloned into the expression vector pET-30a(+), respectively. The correctness of the obtained recombinant vectors were identified by restriction enzyme digestion and sequencing.



5. Expression and purification of proteins

Then, we induce the expression of wild-type and mutant CA2 protein in E.coli BL21 (DE3) with isopropyl-1-thio-β-Dgalactopyrasonide (IPTG) induction. Briefly, recombinant plasmids of the wild-type and mutant CA2 were transformed into E. coli BL21 (DE3) and positive clones were screened by kanamycin resistance. Then, the recombinant E. coli BL21 (DE3) were propagated and its expression was induced with IPTG. Cells were lysed by sonication on ice, and the obtained crude extracts were centrifuged to separate supernatant and debris, and both fractions were subjected to SDS-PAGE and Western Blot.

After confirming that wild-type and mutant CA2 could be expressed in our chassis E. coli BL21 (DE3), protein of wild-type and mutant CA2 were further purified with nickel column for the following CO2 capture.



6. Identification of the function

In order to verify the function of the mutant protein, we prepared the colorimetric or esterase method to measure the Km and Vmax value of the wild-type and mutant CA2, and compare the thermostability of the two proteins by esterase method. Finally, we determine whether the activity of the mutant protein changes and whether the thermal stability is significantly improved.