Line 23: | Line 23: | ||
<div class="modal-close"></div> | <div class="modal-close"></div> | ||
<div class="modal-content"> | <div class="modal-content"> | ||
− | + | <p><strong>Fig. 1</strong> Schematic overview of the SynDrop</p> | |
− | + | <p></p> | |
− | + | <h2><var>“What I cannot create, I do not understand”</var></h2> | |
− | + | <h6>R. Feynmann, February 1988</h6> | |
− | + | <p></p> | |
− | + | <p><h2>Brief overview of the SynDrop - Synthetic Droplets for Membrane Protein Research.</h2></p> | |
− | + | <p></p> | |
− | + | <p> | |
− | + | SynDrop started from the idea of working towards developing a minimal synthetic cell. However it was soon realized that synthetic life is not something that will be made in one go - it will be the culmination of all the small, separate systems that will come together and work in unison. As such, it was understood that these systems need to be independently functional and well described first, before more complex systems are built on top of them. One of the most fundamental differences between life and synthetic systems is the responsivity and communication with the surrounding environment. This function in living cells is mostly performed by membrane proteins. We quickly realized that in order to make a significant impact on synthetic life development, membrane proteins are that understudied field that holds great potential for future applications in synthetic biology. Fig. 1 beautifully summarizes the workflow, complexity and at the same time minimalism of SynDrop. We utilized the emerging technology of microfluidics to synthesize cell-sized liposomes and provide them with the minimal set of all the necessary tools and machineries for the successful synthesis of membrane proteins. These fully equipped liposomes form the core of the SynDrop. Within them are encapsulated purified BAM complex proteins and the chaperone SurA which facilitate beta-barrel bearing protein assembly. Liposomes also contain genetically engineered membrane-associating ribosomes which increase the yields of target protein expression. SynDrop liposomes contain an <var>in vitro</var> transcription-translation system and custom DNA. Their inner aqueous environment is suitable for molecular reactions to occur. Finally, SynDrop provides a novel platform for protein display, whether they were antibodies, single chain fragments, globular proteins, or peptides. It is a huge step forward in membrane protein research and perhaps another resolved puzzle towards the creation of synthetic cell. | |
− | + | ||
− | + | ||
− | + | </p> | |
− | + | <p></p> | |
− | + | <h1>Background</h1> | |
− | + | <p></p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 02:12, 18 October 2018
Description
Describe the Impossible
Cell-free systems are becoming an increasingly popular in vitro tool to study biological processes as it is accompanied by less intrinsic and extrinsic noise. Relying on fundamental concepts of synthetic biology, we apply a bottom-up forward engineering approach to create a novel cell-free system for unorthodox protein-evolution. The core of this system is cell-sized liposomes that serve as excellent artificial membrane models. By encapsulating genetic material and full in vitro protein transcription and translation systems within the liposomes, we create reliable and incredibly efficient nanofactories for the production of target proteins. Even though there are many alternative proteins that can be synthesized, our main focus is directed towards membrane proteins, which occupy approximately one third of living-cells’ genomes. Considering their significance, membrane proteins are spectacularly understudied since synthesis and thus characterization of them remain prevailing obstacles to this day. We aim to utilize liposomes as nanofactories for directed evolution of membrane proteins. Furthermore, by means of directed membrane protein-evolution, a universal exposition system will be designed in order to display any protein of interest on the surface of the liposome. This way, a system is built where a phenotype of a particular protein is expressed on the outside while containing its genotype within the liposome. To prove the concept, small antibody fragments will be displayed to create a single-chain variable fragment (scFv) library for rapid screening of any designated target.