Difference between revisions of "Team:UNSW Australia"

 
(44 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{Template:UNSW_Australia/Navbar}}
 
{{Template:UNSW_Australia/Navbar}}
{{UNSW_Australia/Basics}}
+
{{Template:UNSW_Australia/Basics}}
  
 
<html>
 
<html>
Line 18: Line 18:
  
 
<div id="gif-div">
 
<div id="gif-div">
<div id="unscaffolded" class="gif-box flex-center">
+
    <div id="unscaffolded" class="gif-box flex-center">
<div class="gif-img">
+
        <div class="gif-img">
<img class="left-gif" src="https://static.igem.org/mediawiki/2018/d/d8/T--UNSW_Australia--Unscaffolded.gif">
+
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/d/d8/T--UNSW_Australia--Unscaffolded.gif">
</div>
+
        </div>
<div class="gif-text">
+
        <div class="gif-text">
<p>The <b>diffusion</b> of reaction intermediates limits the <b>efficiency</b> of many industrial biocatalytic pathways. The UNSW iGEM team has designed the <b>Assemblase self-assembling scaffold system</b> as the solution to this problem.</p>
+
            <p class="big-text">Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects. </p>
<p>The Assemblase scaffold <b>specifically and covalently co-localises enzymes in a modular system</b>. As a result, substrate can be <b>channelled</b> between enzymes at a much more efficient rate, thanks to the <b>increased concentration</b> of metabolic intermediates in the immediate surroundings of the enzymes. This may increase the rate of multi-step enzymatic reactions.</p>
+
<p class="big-text">The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the <b>Assemblase self-assembling scaffold system</b> as the solution to this problem.</p>
<p><b>Modularity</b> is desirable as it means the scaffold can be easily <b>adapted</b> for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. <b>Proof of principle</b> was established using enzymes from the indole-acetic-acid biosynthesis pathway.</p>
+
            <p class="big-text">The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes. </p>
 +
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Description">description page</a> to find out how our system has been constructed.</p>
  
 +
        </div>
 +
    </div>
 +
    <div id="scaffolded" class="gif-box flex-center">
 +
        <div class="gif-text">
 +
            <p class="big-text">Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.</p>
  
 +
<p class="big-text">The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. </p>
 +
<p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Design">design page</a> to find out how we chose the best components for our system.</p>
 +
        </div>
 +
        <div class="gif-img">
 +
            <img class="right-gif" src="https://static.igem.org/mediawiki/2018/5/5f/T--UNSW_Australia--Scaffolded.gif">
 +
        </div>
 +
    </div>
 +
    <div id="unscaffolded" class="gif-box flex-center">
 +
        <div class="gif-img">
 +
            <img class="left-gif" src="https://static.igem.org/mediawiki/2018/5/53/T--UNSW_Australia--TeamD-01.png">
 +
        </div>
 +
        <div class="gif-text">
 +
            <p class="big-text">Over the past few months we have been busy <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Cloning">cloning DNA</a>, expressing and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Protein">purifying some really cool proteins</a>, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.</p>
 +
<p class="big-text">We also got to perform some really awesome <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Assays">enzyme assays</a> and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/FRET">FRET</a> experiments, alongside modelling our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/EKD">enzyme kinetics</a> with some mathematical magic.</p>
 +
<p class="big-text">On top of this, we executed <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/MD">molecular dynamics</a> analysis, and grew our <a class="red-link" target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Plants">very own plants</a> on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!
 +
                </p>
 +
        </div>
 +
    </div>
 
</div>
 
</div>
</div>
 
<div id="scaffolded" class="gif-box flex-center">
 
<div class="gif-text">
 
  
<p>The scaffold is a <b>heterohexamer</b> of two <b>alpha prefoldin</b> and four <b>beta prefoldin</b> subunits, each of which has been fused to either a <b>Spy or Snoop Catcher</b>. These catchers covalently bind to Spy or Snoop Tags fused to enzymes of interest.</p>
 
<p>Advantages of the scaffold include that prefoldin is highly <b>thermostable and chemically resistant</b>, being a protein derived from thermophilic archaea. This permits our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.</p>
 
<p>The use of Spy and Snoop Tag/Catchers gives our scaffold <b>modularity</b> with <b>low cross-reactivity</b>, because of the <b>specificity</b> of the irreversible bonds. The tags are also small, so are unlikely to interfere with enzyme functionality when fused to them.</p>
 
 
 
</div>
 
<div class="gif-img">
 
<img class="right-gif" src="https://static.igem.org/mediawiki/2018/5/5f/T--UNSW_Australia--Scaffolded.gif">
 
</div>
 
</div>
 
 
<div id="unscaffolded" class="gif-box flex-center">
 
<div class="gif-img">
 
<img class="left-gif" src="https://static.igem.org/mediawiki/2018/8/8b/T--UNSW_Australia--TeamC.png">
 
</div>
 
<div class="gif-text">
 
<p>Over the past few months, we've been busy .........</p>
 
 
 
</div>
 
</div>
 
 
 
</div>
 
  
 
<div id="links">
 
<div id="links">
 
<h2 class="text-center">Explore Our Project</h2>
 
<h2 class="text-center">Explore Our Project</h2>
 +
<br/>
 
<div class="flex-center">
 
<div class="flex-center">
 
<div id=description-icon>
 
<div id=description-icon>
<a href="https://2018.igem.org/Team:UNSW_Australia/Description"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/4/4f/T--UNSW_Australia--Icon-MD.png></a>
+
<a href="https://2018.igem.org/Team:UNSW_Australia/Description"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/e/ea/T--UNSW_Australia--Description_Icon.png></a>
<p class=text-center>Description</p>
+
<p class="text-center big-text">Description</p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 69: Line 67:
 
<div id=lab-icon>
 
<div id=lab-icon>
 
   <a href="https://2018.igem.org/Team:UNSW_Australia/Lab"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/8/8d/T--UNSW_Australia--Icon-lab.png></a>
 
   <a href="https://2018.igem.org/Team:UNSW_Australia/Lab"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/8/8d/T--UNSW_Australia--Icon-lab.png></a>
   <p class=text-center>Lab</p>
+
   <p class="text-center big-text">Lab</p>
 
</div>
 
</div>
 
<div id=hp-icon>
 
<div id=hp-icon>
 
<a href="https://2018.igem.org/Team:UNSW_Australia/Human_Practices"><img class='link-icon' src="https://static.igem.org/mediawiki/2018/3/33/T--UNSW_Australia--Icon-hp.png"></a>
 
<a href="https://2018.igem.org/Team:UNSW_Australia/Human_Practices"><img class='link-icon' src="https://static.igem.org/mediawiki/2018/3/33/T--UNSW_Australia--Icon-hp.png"></a>
<p class=text-center>Human Practices</p>
+
<p class="text-center big-text">Human Practices</p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 79: Line 77:
 
<div id=design-icon>
 
<div id=design-icon>
 
   <a href=https://2018.igem.org/Team:UNSW_Australia/Design><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/9b/T--UNSW_Australia--Icon-project.png></a>
 
   <a href=https://2018.igem.org/Team:UNSW_Australia/Design><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/9b/T--UNSW_Australia--Icon-project.png></a>
   <p class=text-center>Design</p>
+
   <p class="text-center big-text">Design</p>
 
</div>
 
</div>
 
<div id=modelling-icon>
 
<div id=modelling-icon>
 
   <a href="https://2018.igem.org/Team:UNSW_Australia/Model"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/4/44/T--UNSW_Australia--Icon-modelling.png></a>
 
   <a href="https://2018.igem.org/Team:UNSW_Australia/Model"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/4/44/T--UNSW_Australia--Icon-modelling.png></a>
   <p class=text-center>Modelling</p>
+
   <p class="text-center big-text">Modelling</p>
 
</div>
 
</div>
 
</div>
 
</div>
Line 89: Line 87:
 
<div id=team-icon>
 
<div id=team-icon>
 
  <a href="https://2018.igem.org/Team:UNSW_Australia/Team"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/97/T--UNSW_Australia--Icon-people.png></a>
 
  <a href="https://2018.igem.org/Team:UNSW_Australia/Team"><img class='link-icon' src=https://static.igem.org/mediawiki/2018/9/97/T--UNSW_Australia--Icon-people.png></a>
   <p class=text-center>Team</p>
+
   <p class="text-center big-text">Team</p>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<br/>
  
<div height="300px" width="100%">
+
<div height="350px" width="100%">
 
</div>
 
</div>
  
Line 120: Line 119:
 
   position: absolute;
 
   position: absolute;
 
   bottom: 20px;
 
   bottom: 20px;
   padding-top: 40px;
+
   padding-top: 20px;
 
}
 
}
  
Line 142: Line 141:
 
   100% {opacity: 1}
 
   100% {opacity: 1}
 
}
 
}
 +
  
 
.circular-button {
 
.circular-button {
Line 208: Line 208:
 
   width: 100vw;
 
   width: 100vw;
 
   background-color: #f0f0f0;
 
   background-color: #f0f0f0;
 +
  animation-name: fade-in;
 +
  animation-duration: 5s;
 
}
 
}
  
Line 274: Line 276:
 
   opacity: 1;
 
   opacity: 1;
 
   filter: grayscale(0%);
 
   filter: grayscale(0%);
 +
}
 +
 +
.big-text {
 +
  font-size: 1.3rem !important;
 +
}
 +
.red-link:link {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
 +
 +
.red-link:visited {
 +
    color: #9b3131;
 +
    background-color: transparent;
 +
    text-decoration: none;
 +
}
 +
 +
.red-link:hover {
 +
    color: #c95d5d;
 +
    background-color: transparent;
 +
    text-decoration: underline;
 
}
 
}
 
</style>
 
</style>

Latest revision as of 02:24, 18 October 2018

ASSEMBLASE

Covalently Co-localising Enzymes in a Modular System

Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects.

The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the Assemblase self-assembling scaffold system as the solution to this problem.

The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes.

Head over to our description page to find out how our system has been constructed.

Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.

The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. 

Head over to our design page to find out how we chose the best components for our system.

Over the past few months we have been busy cloning DNA, expressing and purifying some really cool proteins, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.

We also got to perform some really awesome enzyme assays and FRET experiments, alongside modelling our enzyme kinetics with some mathematical magic.

On top of this, we executed molecular dynamics analysis, and grew our very own plants on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!