Bec Schacht (Talk | contribs) |
Patricia S (Talk | contribs) |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 23: | Line 23: | ||
</div> | </div> | ||
<div class="gif-text"> | <div class="gif-text"> | ||
− | <p class="big-text">The diffusion of reaction intermediates limits the efficiency of many | + | <p class="big-text">Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects. </p> |
− | <p class="big-text">The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, | + | <p class="big-text">The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the <b>Assemblase self-assembling scaffold system</b> as the solution to this problem.</p> |
− | <p class="big-text">Head over to our <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Description">description page</a> to find out how our system has been constructed.</p> | + | <p class="big-text">The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes. </p> |
+ | <p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Description">description page</a> to find out how our system has been constructed.</p> | ||
</div> | </div> | ||
Line 34: | Line 35: | ||
<p class="big-text">The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. </p> | <p class="big-text">The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis. </p> | ||
− | <p class="big-text">Head over to our <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Design">design page</a> to find out how we chose the best components for our system.</p> | + | <p class="big-text">Head over to our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Design">design page</a> to find out how we chose the best components for our system.</p> |
</div> | </div> | ||
<div class="gif-img"> | <div class="gif-img"> | ||
Line 45: | Line 46: | ||
</div> | </div> | ||
<div class="gif-text"> | <div class="gif-text"> | ||
− | <p class="big-text">Over the past few months we have been busy <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Cloning">cloning DNA</a>, expressing and <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Protein">purifying some really cool proteins</a>, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.</p> | + | <p class="big-text">Over the past few months we have been busy <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Cloning">cloning DNA</a>, expressing and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Protein">purifying some really cool proteins</a>, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.</p> |
− | <p class="big-text">We also got to perform some really awesome <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Assays">enzyme assays</a> and <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/FRET">FRET</a> experiments, alongside modelling our <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Model/EKD">enzyme kinetics</a> with some mathematical magic.</p> | + | <p class="big-text">We also got to perform some really awesome <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Assays">enzyme assays</a> and <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Lab/FRET">FRET</a> experiments, alongside modelling our <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/EKD">enzyme kinetics</a> with some mathematical magic.</p> |
− | <p class="big-text">On top of this, we executed <a target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Model/MD">molecular dynamics</a> analysis, and grew our <a class="red-link" target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Plants">very own plants</a> on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM! | + | <p class="big-text">On top of this, we executed <a target="_blank" class="red-link" href="https://2018.igem.org/Team:UNSW_Australia/Model/MD">molecular dynamics</a> analysis, and grew our <a class="red-link" target="_blank" href="https://2018.igem.org/Team:UNSW_Australia/Lab/Plants">very own plants</a> on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM! |
</p> | </p> | ||
</div> | </div> | ||
Line 89: | Line 90: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <br/> | ||
− | <div height=" | + | <div height="350px" width="100%"> |
</div> | </div> | ||
Latest revision as of 02:24, 18 October 2018
ASSEMBLASE
Covalently Co-localising Enzymes in a Modular System
Enzymes are ubiquitous to synthetic biology. We use them for everything, from the creation of therapeutics, to the development of novel bioremediation systems. Ensuring their efficiency is essential to the success of many synthetic biology projects.
The diffusion of reaction intermediates limits the efficiency of many biocatalytic pathways. The UNSW iGEM team has designed the Assemblase self-assembling scaffold system as the solution to this problem.
The Assemblase scaffold specifically and covalently co-localises enzymes in a modular system. As a result, substrates can be channelled between enzymes at a much more efficient rate. This is due to the increased concentration of metabolic intermediates in the proximate surroundings of the enzymes.
Head over to our description page to find out how our system has been constructed.
Our Assemblase scaffold has a range of advantages that make it ideal for a variety of applications. This includes it being highly thermostable and chemically resistant permiting our scaffold to be used at high temperatures, allowing for increased kinetic energy in our system and therefore an increased rate of catalysis.
The chosen attachment system also affords our scaffold modularity. This is desirable as it means the scaffold can be easily adapted for use in a range of pathways important in industry, bioremediation, and pharmaceutical synthesis.
Head over to our design page to find out how we chose the best components for our system.
Over the past few months we have been busy cloning DNA, expressing and purifying some really cool proteins, and attaching proteins together through self-assembly and with the Spy/Snoop Catcher/Tag system.
We also got to perform some really awesome enzyme assays and FRET experiments, alongside modelling our enzyme kinetics with some mathematical magic.
On top of this, we executed molecular dynamics analysis, and grew our very own plants on agar plates in the lab. We had a great year and would absolutely love to share it with you. So, have a look around, and explore all things UNSW iGEM!