Difference between revisions of "Team:East Chapel Hill"

 
(48 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{East_Chapel_Hill}}
 
{{East_Chapel_Hill}}
 
<html>
 
<html>
<style>
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
p.big {
+
<script src="https://github.com/kswedberg/jquery-smooth-scroll/blob/master/jquery.smooth-scroll.min.js"></script>
     line-height: 1.8;
+
<script>
}
+
$('.smooth').on('click', function() {
</style>
+
     $.smoothScroll({
<head>
+
        scrollElement: $('body'),
 
+
        scrollTarget: '#' + this.id
 +
    });
 +
   
 +
    return false;
 +
});
 +
</script>
  
 +
<head>
 
<meta charset="UTF-8">
 
<meta charset="UTF-8">
 
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 
<meta http-equiv="X-UA-Compatible" content="IE=edge">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
    <title>Home</title>
+
<title>Home</title>
 
     <!-- Bootstrap -->
 
     <!-- Bootstrap -->
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Template:East_Chapel_Hill/CSS?action=raw&ctype=text/css" />
+
<link href="https://2018.igem.org/Template:East_Chapel_Hill rel="stylesheet">
 +
</head>
  
 
<style>
 
<style>
 +
p.big {
 +
    line-height: 1.8;
 +
}
 +
 
.foo img:last-child{display:none}
 
.foo img:last-child{display:none}
 
.foo:hover img:first-child{display:none}
 
.foo:hover img:first-child{display:none}
Line 30: Line 41:
 
color: #aaa;
 
color: #aaa;
 
font-size: 85%;
 
font-size: 85%;
 +
font-style: Optima;
 
}
 
}
 
 
 
</style>
 
</style>
 
 
 
<style>
 
<style>
 
button{border: 0; background-color: #D3D3D3
 
button{border: 0; background-color: #D3D3D3
 
}
 
}
 
</style>
 
</style>
</head>
 
  
</style>
 
  
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
+
<!-- Define p2 type -->  
<script src="https://github.com/kswedberg/jquery-smooth-scroll/blob/master/jquery.smooth-scroll.min.js"></script>
+
<style>
<script>
+
p2 {
$('.smooth').on('click', function() {
+
    display: block;
    $.smoothScroll({
+
    margin-top: 1em;
        scrollElement: $('body'),
+
    margin-bottom: 1em;
        scrollTarget: '#' + this.id
+
    margin-left: 5em;
    });
+
    margin-right: 5em;
   
+
}
    return false;
+
</style>
});
+
<!-- Define horizontal bar type -->  
</script>
+
<style>  
<!-- First Parallax Image with Logo Text -->
+
hr {
<div class="w3-display-container w3-opacity-min" id="top">
+
border: 2px solid;
  <div class="logo">
+
margin-right: 80px;
  </div>
+
margin-left:80px;
<div style="z-index:1 !important;" class="w3-display-bottommiddle w3-hide-medium w3-hide-small">
+
}
<button style="position:relative !important; z-index:1 !important;" class="icon-button" onclick="window.location.href='#first'">
+
</style>
    <span style="color:#4C177D;" class="w3-xxxlarge glyphicon glyphicon-chevron-down">
+
    </span>
+
</button>
+
</div>
+
</div>
+
  
 +
<!-- Define h2 -->
 +
<style>
 +
h2 {
 +
  margin-top: 1em;
 +
            margin-bottom: 1em;
 +
            margin-left: 6em;
 +
            margin-right: 6em;
 +
            text-align: left;
 +
                font-size: 20px;
 +
}
 +
</style>
  
<body>
 
<center>
 
<img src="https://static.igem.org/mediawiki/2018/0/08/T--East_Chapel_Hill--TEAMEAST.gif" width="100%"/>
 
</center>
 
</div>
 
</section>
 
  
  
<div style="z-index:1 !important;" class="w3-display-bottommiddle">
+
<!-- CONTENT BEGINS HERE -->
<button height="80%" width="auto" style="position:relative !important; z-index:1 !important;" class="icon-button w3-hide-small w3-hide-medium" onclick="scrollWin2()">
+
<body>
    <span style="color:#366B61;;" class="w3-xxxlarge glyphicon glyphicon-chevron-down">
+
    </span>
+
  </button>
+
</div>
+
</div>
+
  
 +
<!-- slides -->
 +
<div id="myCarousel" class="carousel slide" data-ride="carousel" style="margin-top:60px;">
 +
    <!-- Indicators -->
 +
    <ol class="carousel-indicators">
 +
      <li data-target="#myCarousel" data-slide-to="0" class="active"></li>
 +
      <li data-target="#myCarousel" data-slide-to="1"></li>
 +
      <li data-target="#myCarousel" data-slide-to="2"></li>
  
<div class= "paragraph"  id="second">
+
    </ol>
<div style="padding: 5% 10%;">
+
  
<h3 style="black;" class="w3-center w3-padding-large"><br><br>Our Project</h3><br>  
+
    <!-- Wrapper for slides -->
<p style="padding-bottom:0; padding-right: 10%; padding-left:10%; black; font-size:14px;" class="big"> In many poor countries, excess concentrations of fluoride have entered water sources through erosion of sediment and minerals. These toxic concentrations, which are defined by the World Health Organization to be above 1.0mg/L, may result in an array of health complications. Fluoride has been known to induce cell stress, which in turn impairs the function of ameloblasts who are tasked with forming dental enamel. The resulting disease is dental fluorosis, which manifests in the teeth as porous and yellowed enamel. Other potential consequences of exposure to toxic fluoride levels include skeletal fluorosis, which may result in bone deformities, as well as impaired development.
+
    <div class="carousel-inner">
Our project involves the development of an operon that will serve as a visual indicator of excess fluoride. We plan to further develop and improve the operon created by last year’s iGEM team, specifically focusing on the fluoride riboswitch and promoter. We are looking for promoters that have an increased gene expression and riboswitches that have increased affinity to fluoride. This would allow for our operon to detect fluoride at levels even lower than 1.0mg/L, a significant improvement from the previous operon.
+
</br> </p>
+
  
<figure>  
+
      <div class="item active">
<br><br><br>
+
        <img src="https://static.igem.org/mediawiki/2018/archive/b/b6/20181018002849%21T--East_Chapel_Hill--slide1.png" style="width:100%;">
<center><img src="http://via.placeholder.com/350x150" width="350px" border="0">
+
        <div class="carousel-caption">
</center></figure>
+
        </div>
 +
      </div>
  
 +
      <div class="item">
 +
        <img src="https://static.igem.org/mediawiki/2018/9/90/T--East_Chapel_Hill--slide2.png"  style="width:100%;">
 +
      </div>
 +
 
 +
      <div class="item">
 +
        <img src="https://static.igem.org/mediawiki/2018/4/41/T--East_Chapel_Hill--slide3.png"  style="width:100%;">
 +
      </div>
  
 +
      <div class="item">
 +
        <img src="O"  style="width:100%;">
 +
      </div>
  
  
  
<div style="z-index:1 !important;" class="w3-display-bottommiddle">
+
      <div class="item">
 +
        <img src="O"  style="width:100%;">
 +
      </div>
 +
 
 +
      <div class="item">
 +
        <img src="O"  style="width:100%;">
 +
      </div>
 +
 
 +
      <div class="item">
 +
        <img src="O"  style="width:100%;">
 +
      </div>
 +
 
 +
 
 +
        </div>
 +
      </div>
 +
 
 +
    </div>
 +
 
 +
 +
</video>
 +
</div> </center>
 +
<!--
 +
<p></p><p></p>
 +
-->
 +
<br>
 +
<hr>
 +
<h1><p2>Improving the Efficacy of Riboswitch Based Sensor for Visual Detection of Excess Fluoride in Water</h1></p2>
 +
<hr>
 +
<!--
 +
 
 +
-->
 +
<div class= "paragraph"  id="second">
 +
<div style="padding: 5% 10%;">
 +
 
 +
<!-- PROJECT DESCRIPTION -->
 +
 
 +
<p2> Scientists around the world have recognized fluoride as a markedly beneficial resource for protecting tooth enamel from decay. However, excess fluoride can also have an adverse effect on human health. A significant problem arises when excess amounts of fluoride infiltrate drinking water. High fluoride concentrations can have devastating impacts on dental health, especially those of children, and eventually lead to hypomineralization and dental fluorosis.
 +
<br></br>
 +
To address this challenge, we aim to first develop an efficient, user-friendly, and cost-sensitive fluoride biosensor using previously characterized fluoride riboswitches. Last year, we developed an operon whose riboswitch was only activated when bound to fluoride. This fluoride-specific activation allowed for selective transcription of the chloramphenicol acetyltransferase (CAT) gene. Bacteria that can express the CAT gene have a resistance to the chloramphenicol antibiotic, and can survive in the presence of chloramphenicol. Consequently, the presence of fluoride allows for bacterial growth in the presence of chloramphenicol. However, this system was not able to detect concentrations low enough to prove useful in realistic applications. This summer, we focused on testing various promoters and riboswitch sequences to reduce the detection threshold and improve the efficacy of our previous operon. 
 +
</p2>
 +
</center></figure>
 +
 
 +
 
  
  </button>
 
</div></p>
 
</div>
 
</div>
 
  
  
  
  
<div class="w3-display-container">
 
<div>
 
  <h3 class="w3-center w3-padding-large">Watch to learn more!</h3><br>
 
</div>
 
<div class="w3-center container">
 
<span class="w3-center"> <video class="w3-center" controls><source src= "http://via.placeholder.com/350x150" type="video/mp4" type="video/mp4"></video> </span>
 
</div>
 
</div>
 
    <!-- Hide this text on small devices -->
 
</div>
 
 
 
<!-- Container (Team Section) -->
 
  
  <!-- Responsive Grid. Four columns on tablets, laptops and desktops. Will stack on mobile devices/small screens (100% width)
 
  
  
  
<!-- Modal for full size images on click-->
 
<div id="modal01" class="w3-modal w3-black" onclick="this.style.display='none'">
 
  <span class="w3-button w3-large w3-black w3-display-topright" title="Close Modal Image"><i class="fa fa-remove"></i></span>
 
  <div class="w3-modal-content w3-animate-zoom w3-center w3-transparent w3-padding-64">
 
    <img id="img01" class="w3-image">
 
    <p id="caption" class="w3-opacity w3-large"></p>
 
  </div>
 
</div>
 
<br>
 
<br>
 
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 02:27, 18 October 2018

Home


Improving the Efficacy of Riboswitch Based Sensor for Visual Detection of Excess Fluoride in Water


Scientists around the world have recognized fluoride as a markedly beneficial resource for protecting tooth enamel from decay. However, excess fluoride can also have an adverse effect on human health. A significant problem arises when excess amounts of fluoride infiltrate drinking water. High fluoride concentrations can have devastating impacts on dental health, especially those of children, and eventually lead to hypomineralization and dental fluorosis.

To address this challenge, we aim to first develop an efficient, user-friendly, and cost-sensitive fluoride biosensor using previously characterized fluoride riboswitches. Last year, we developed an operon whose riboswitch was only activated when bound to fluoride. This fluoride-specific activation allowed for selective transcription of the chloramphenicol acetyltransferase (CAT) gene. Bacteria that can express the CAT gene have a resistance to the chloramphenicol antibiotic, and can survive in the presence of chloramphenicol. Consequently, the presence of fluoride allows for bacterial growth in the presence of chloramphenicol. However, this system was not able to detect concentrations low enough to prove useful in realistic applications. This summer, we focused on testing various promoters and riboswitch sequences to reduce the detection threshold and improve the efficacy of our previous operon.