Difference between revisions of "Team:ICT-Mumbai"

 
(97 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
<html>
 
<html>
 
<style>
 
<style>
#logo {
 
    height: 150px;
 
   
 
    padding-bottom: 30px;
 
    float: left;
 
  
 +
#grey-div2{
 +
background-color: #444;
 +
min-height: 200px;
 
}
 
}
  
#logo-image{
+
#grey-div2 h1{
    display: block;
+
color: #E86D06;
    min-height: 400px;
+
}
    background: url('https://static.igem.org/mediawiki/2018/d/d4/T--ICT-Mumbai--SMART_SOIL_LOGO.jpg') no-repeat center;
+
#div1{
    background-size: auto 150px;
+
min-height: 400px;  
 +
padding-top: -100px;
 +
background: #444;
 
}
 
}
 +
  
 
#hero-image {
 
#hero-image {
 
     height: 580px;
 
     height: 580px;
     padding-top: 1px;
+
     padding-top: 30px;
     background: #e8eced url('https://static.igem.org/mediawiki/2018/b/b5/T--ICT-Mumbai--IHP_gh2.jpg') no-repeat center;
+
     background: #ffffff url("https://static.igem.org/mediawiki/2018/1/17/T--ICT-Mumbai--logo_new.jpg") no-repeat top;
     background-size: 1400px 580px;
+
     background-size: 300px auto;
 +
    background-color: (0,0,0,0.5);
 
}
 
}
#hero-image h2 {
+
 
     color: #fff;
+
#hero-image h1 {
     margin: 260px 0px -250px 0px;
+
     color: #2F86A1;
 +
    line-height: 1em;
 +
     margin: 260px 0px -250px 60px;
 +
}
 +
 
 +
#hero-image img {
 +
    height: 200px;
 +
    margin: -160px -160px -350px 0px;
 
}
 
}
  
Line 39: Line 48:
 
     font-size: 20px;
 
     font-size: 20px;
 
     line-height: 50px;
 
     line-height: 50px;
     margin: 0px auto;
+
     margin: 300px auto;
 
    
 
    
 
}
 
}
Line 45: Line 54:
  
 
.button-1:visited {
 
.button-1:visited {
     background-color: #444;
+
     background-color: #777;
 
     color: #fff;
 
     color: #fff;
 
}
 
}
 
.button-1:hover {
 
.button-1:hover {
     background-color: #7aa11b;
+
     background-color: #2F86A1;
 
     color: #fff;
 
     color: #fff;
 
}
 
}
  
  
#features ul {
+
.button-2 {
    margin: 80px 0;
+
}
+
#features ul li {
+
    width: 180px;
+
    padding-top: 140px;
+
    float: left;
+
    margin-right: 55px;
+
    text-align: center;
+
}
+
#features ul li.feature-1 {
+
    background: url('https://static.igem.org/mediawiki/2018/c/c0/T--ICT-Mumbai--eco_friendly_icon_new.jpg') no-repeat top center;
+
    background-size: contain;
+
}
+
#features ul li.feature-2 {
+
    background: url('https://static.igem.org/mediawiki/2018/7/79/T--ICT-Mumbai--smart_selective_icon.jpg') no-repeat top center;
+
    background-size: contain;
+
 
+
}
+
#features ul li.feature-3 {
+
    background: url('https://static.igem.org/mediawiki/2018/b/b4/T--ICT-Mumbai--safe_community_icon.jpg') no-repeat top center;
+
    background-size: contain;
+
 
+
}
+
#features ul li.feature-4 {
+
    background: url('https://static.igem.org/mediawiki/2018/7/7e/T--ICT-Mumbai--applications_icon.jpg') no-repeat top center;
+
    background-size: contain;
+
 
+
}
+
 
+
#primary-content {
+
    background-color: #f8fafa;
+
    padding: 60px 0;
+
    text-align: center;
+
}
+
#primary-content h3 {
+
 
     display: block;
 
     display: block;
    margin: 0 auto 20px auto;
 
    width: 400px;
 
    border-bottom: 1px solid #7aa11b;
 
    padding: 0 0 20px 0;
 
}
 
 
#primary-content p{
 
    font: normal 20px "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;
 
    line-height: 2em;
 
}
 
 
#primary-content a img {
 
    margin: 20px 0;
 
}
 
 
 
#secondary-content {
 
    padding: 60px 0;
 
 
     text-align: center;
 
     text-align: center;
}
+
     background: #777;
#secondary-content article {
+
    width: 460px;
+
    height: 270px;
+
    float: left;
+
     background-color: #f5f5f5;
+
}
+
#secondary-content article:first-child {
+
    margin-right: 20px;
+
}
+
#secondary-content article .overlay {
+
    background: rgba(255, 255, 255, .95);
+
    height: 230px;
+
    width: 190px;
+
    padding: 20px;
+
}
+
article h4 {
+
    border-bottom: 1px solid #02b8dd;
+
    padding-bottom: 20px;
+
}
+
.more-link {
+
    border: 1px solid #02b8dd;
+
    color: #02b8dd;
+
    padding: 6px 20px;
+
 
     border-radius: 3px;
 
     border-radius: 3px;
}
 
.more-link:hover {
 
    background-color: #02b8dd;
 
 
     color: #fff;
 
     color: #fff;
}
 
 
#cta {
 
    padding: 60px 0;
 
    text-align: center;
 
}
 
#cta h3 {
 
    display: block;
 
    margin: 0 auto 20px auto;
 
    width: 400px;
 
    border-bottom: 1px solid #02b8dd;
 
    padding: 0 0 20px 0;
 
}
 
.button-2 {
 
    display: block;
 
    margin: 0 auto;
 
    border: 2px solid #02b8dd;
 
    color: #02b8dd;
 
    border-radius: 3px;
 
 
     width: 180px;
 
     width: 180px;
 
     height: 50px;
 
     height: 50px;
 
     font-size: 20px;
 
     font-size: 20px;
 
     line-height: 50px;
 
     line-height: 50px;
 +
    margin: 20px auto;
 +
    margin-bottom: -80px;
 +
 
 +
}
 +
 +
 +
.button-2:visited {
 +
    background-color: #777;
 +
    color: #fff;
 
}
 
}
 
.button-2:hover {
 
.button-2:hover {
     background-color: #02b8dd;
+
     background-color: #2F86A1;
 
     color: #fff;
 
     color: #fff;
 
}
 
}
 +
 
</style>
 
</style>
  
 
<body>
 
<body>
  
    <div id="logo-image">
+
<br>
    </div>
+
<br>
    <div>
+
<br>
  
 +
<div style="min-height: 400px; padding-top: -100px;  background: #9ADED8;">
 +
<img style="display: block; margin: auto; height: 500px; margin-top: -38px;"src="https://static.igem.org/mediawiki/2018/0/0e/T--ICT-Mumbai--Home-cover.gif"></img>
 +
</div>
 +
 +
<div id="grey-div2" style="height: 240px;">
 +
<h1>Enabling soil bacteria to sense and respond to plant signals</h1>
 +
<a href="https://2018.igem.org/Team:ICT-Mumbai/Description" class="button-2">Learn More</a>
 +
</div>
 +
<!--
 
     <div id="hero-image">
 
     <div id="hero-image">
 
         <div class="wrapper">
 
         <div class="wrapper">
         <h2>Engineering soil bacteria to detect plants!<h2>
+
         <h1>Engineering soil bacteria to detect plants!</h1>
        <a href="#about" class="button-1">Learn More</a>
+
      <a href="https://2018.igem.org/Team:ICT-Mumbai/Description" class="button-1">Learn More</a>
    </div>
+
    </div>
+
 
+
    <br>
+
    <br>
+
      <a id="about"></a>
+
 
      
 
      
  <div id="primary-content">
+
<a id="about"></a>
+
</div>
    <div class="wrapper">
+
 
        <article>
+
 
            <h3>Our Project</h3>
+
            <p>Greatest ideas are always found in one’s own backyard. Somewhat similar happened to this year’s iGEM team ICT Mumbai. India being a majorly agriculture dependent country, we decided to make lives of our farmers better as a result of our project. The fate of almost all agriculture as a business in India depends upon quality of the seeds, fertilizers, pesticides, herbicides, their cost, and the cost of the final product. Usual environmental catastrophes such as overprecipitation or draught or attack of acclimatized pest, microbial disease or even over production of the product makes the final price of the product highly temperamental. We wanted to use synthetic biology to improve yield of the product and help farmer make some more profit out of it. We cannot engineer mother Nature to reduce redundant rainfall or increase rainfall in dry areas using synthetic biology! </p>
+
            <a href="#"><img src="https://static.igem.org/mediawiki/2018/8/8b/T--ICT-Mumbai--SAR_abstract.png" alt="video placeholder" /></a>
+
  
<p>Hence, we decided to go down to the roots (both literally and figuratively!) of agriculture. In this project, we focus on differentiation between crops and weeds and the assimilation of inorganic phosphorous in the soil. It has been established in a lot of scientific publications that every plant (crop in our case) maintains its own identity near its roots, the area what scientists call, the rizosphere, by secreting some unique chemicals. We propose an engineered soil microbe, <I>Bacillus subtilis</I>, with a circuit built inside it, which will switch on when the microbe identifies those unique chemicals (henceforth referred to as exudates). This way, <I>B. subtilis</I>, will achieve first goal of our project.
+
    </div>
 +
    -->
 +
<div class="wrapper">
 
<br>
 
<br>
 
<br>
 
<br>
Further, we wish to utilize this method of identification and differentiation of plants to facilitate selective growth of crops in field. This time, we turn our attention to the fertilizers and pesticides. As mentioned earlier, there is a lot of uncertainty in the prices of vegetable products in India. This makes agriculture a mercurial business. How can one use synthetic biology to help farmer grow same number of crops in lower investment? Yes, our project has a potential solution to it.
+
<div>
<br>
+
<img src="https://static.igem.org/mediawiki/2018/a/ae/T--ICT-Mumbai--farming.svg" style="float: left; height: 250px; border-radius: 30px; margin: 30px; margin-top: 150px; margin-bottom: 30px;"></img>
<br>
+
<h1>
Farmers in India use NPK fertilizers, which are composites of Nitrogen, Phosphorous and Potassium bearing synthetic compounds. We here mainly focus on Phosphorous. There is a lot of inorganic phosphorous available in the soil. But crops cannot directly assimilate it. Phosphorous that is provided to plants via NPK fertilizers is in specific soluble form. We wish to engineer the <I>B. Subtilis</I> to produce phytases and secrete those enzymes outside the cell. Phytases can convert inorganic phosphorous into such a form which crops can uptake.
+
Challenges in Agriculture
<br>
+
</h1>
<br>
+
<p>
Now where does identification and differentiation stand in this part of the project? We propose to incorporate a genetic circuit that contains an inducible promoter, which is induced by the exudates of that specific crop. By using a transcription regulator, we propose to build an amplification circuit inside the cell, which will keep on producing phytases once the promoter is induced. The exudate which corresponds to weed cannot induce the promoter in the circuit, hence phytases will not be produced in the rizosphere of weeds. There will not be conversation of inorganic phosphorous into assimilable phosphorous which will subdue the growth of weeds.
+
Agricultural practices followed by farmers in India are largely unsustainable and require the use of synthetic chemical fertilizers, pesticides and weedicides to ensure adequate plant nutrition, protect crops against various diseases and prevent growth of weeds, respectively. Excessive use of these chemicals lead to environmental pollution as well as a variety of health problems in the farming community. These facts are supported by the information gained from our <a href="https://2018.igem.org/Team:ICT-Mumbai/Human_Practices"><u>Human Practices</u></a> activities. Hence, there is a need for a solution that is easy to implement and moves Indian agriculture towards more sustainable practices.
<br>
+
</p>
<br>
+
In a nutshell, our project identifies broad spectrum problems faced by farmers in India and tries to offer a small but potentially effective solution to those. </p>
+
        </article>
+
    </div>
+
 
</div>
 
</div>
  
    <div id="features">
+
<div>
    <div class="wrapper">
+
<img src="https://static.igem.org/mediawiki/2018/4/43/T--ICT-Mumbai--sustainable.svg" style="float: right; height: 300px; border-radius: 30px; margin: 30px; margin-top: 150px; margin-bottom: 40px;"></img>
        <ul style=none>
+
<h1>
            <li class="feature-1">
+
Sustainable Agriculture and our project
                <br>
+
</h1>
                <br>
+
<p>
                <h4>Eco-Friendly</h4>
+
Plant root exudates can act as molecular signals for microorganisms in the rhizosphere, which can in turn modulate gene expression. To exploit this natural phenomenon and engineer microorganisms to sense and respond to plants, we are studying changes in gene expression in the common soil bacterium, <i>Bacillus subtilis</i>, in response to root exudates of rice, wheat, tomato and soybean plants. As a case study, we are constructing a <a href="https://2018.igem.org/Team:ICT-Mumbai/Design"><u>genetic amplification circuit</u></a> using an exudate-inducible promoter to produce phosphatase, which will help solubilize organic phosphate present in the soil, and thus reduce the requirement of inorganic phosphate fertilizers. This represents an advance toward smart soil management practices and sustainable agriculture.
                <p>Our project eliminates the need for Chemical activators and excessive fertilizers</p>
+
</p>
            </li>
+
</div>
            <li class="feature-2">
+
                <br>
+
                <h4>Smart and Selective</h4>
+
                <p>Our Smart bacteria ensure that only certain plants benefit and not weeds.</p>
+
            </li>
+
            <li class="feature-3">
+
                <br>
+
                <h4>Safe for the community</h4>
+
                <p>Our project involves the use of &nbsp;Bacillus Subtilis, a bacteria which is found in the soil naturally and thus is safety is not an issue :)</p>
+
            </li>
+
  
    <li class="feature-4">
+
</div>
                <br>
+
                <h4>Plethora of Applications</h4>
+
                <p>Applications could be selective growth of plants, &nbsp;provision of different nutrients in different zones of the farm and much more..</p>
+
            </li>
+
  
            <div class="clear"></div>
 
        </ul>
 
    </div>
 
 
</div>
 
</div>
   
 
 
 
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 02:41, 18 October 2018

Simply







Enabling soil bacteria to sense and respond to plant signals

Learn More


Challenges in Agriculture

Agricultural practices followed by farmers in India are largely unsustainable and require the use of synthetic chemical fertilizers, pesticides and weedicides to ensure adequate plant nutrition, protect crops against various diseases and prevent growth of weeds, respectively. Excessive use of these chemicals lead to environmental pollution as well as a variety of health problems in the farming community. These facts are supported by the information gained from our Human Practices activities. Hence, there is a need for a solution that is easy to implement and moves Indian agriculture towards more sustainable practices.

Sustainable Agriculture and our project

Plant root exudates can act as molecular signals for microorganisms in the rhizosphere, which can in turn modulate gene expression. To exploit this natural phenomenon and engineer microorganisms to sense and respond to plants, we are studying changes in gene expression in the common soil bacterium, Bacillus subtilis, in response to root exudates of rice, wheat, tomato and soybean plants. As a case study, we are constructing a genetic amplification circuit using an exudate-inducible promoter to produce phosphatase, which will help solubilize organic phosphate present in the soil, and thus reduce the requirement of inorganic phosphate fertilizers. This represents an advance toward smart soil management practices and sustainable agriculture.