Kumi momos (Talk | contribs) |
|||
(57 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
<html> | <html> | ||
<style> | <style> | ||
+ | |||
+ | #grey-div2{ | ||
+ | background-color: #444; | ||
+ | min-height: 200px; | ||
+ | } | ||
+ | |||
+ | #grey-div2 h1{ | ||
+ | color: #E86D06; | ||
+ | } | ||
+ | #div1{ | ||
+ | min-height: 400px; | ||
+ | padding-top: -100px; | ||
+ | background: #444; | ||
+ | } | ||
+ | |||
#hero-image { | #hero-image { | ||
Line 12: | Line 27: | ||
#hero-image h1 { | #hero-image h1 { | ||
− | color: # | + | color: #2F86A1; |
+ | line-height: 1em; | ||
margin: 260px 0px -250px 60px; | margin: 260px 0px -250px 60px; | ||
} | } | ||
Line 38: | Line 54: | ||
.button-1:visited { | .button-1:visited { | ||
− | background-color: # | + | background-color: #777; |
color: #fff; | color: #fff; | ||
} | } | ||
.button-1:hover { | .button-1:hover { | ||
+ | background-color: #2F86A1; | ||
+ | color: #fff; | ||
+ | } | ||
+ | |||
+ | |||
+ | .button-2 { | ||
+ | display: block; | ||
+ | text-align: center; | ||
+ | background: #777; | ||
+ | border-radius: 3px; | ||
+ | color: #fff; | ||
+ | width: 180px; | ||
+ | height: 50px; | ||
+ | font-size: 20px; | ||
+ | line-height: 50px; | ||
+ | margin: 20px auto; | ||
+ | margin-bottom: -80px; | ||
+ | |||
+ | } | ||
+ | |||
+ | |||
+ | .button-2:visited { | ||
+ | background-color: #777; | ||
+ | color: #fff; | ||
+ | } | ||
+ | .button-2:hover { | ||
background-color: #2F86A1; | background-color: #2F86A1; | ||
color: #fff; | color: #fff; | ||
Line 54: | Line 96: | ||
<br> | <br> | ||
+ | <div style="min-height: 400px; padding-top: -100px; background: #9ADED8;"> | ||
+ | <img style="display: block; margin: auto; height: 500px; margin-top: -38px;"src="https://static.igem.org/mediawiki/2018/0/0e/T--ICT-Mumbai--Home-cover.gif"></img> | ||
+ | </div> | ||
+ | |||
+ | <div id="grey-div2" style="height: 240px;"> | ||
+ | <h1>Enabling soil bacteria to sense and respond to plant signals</h1> | ||
+ | <a href="https://2018.igem.org/Team:ICT-Mumbai/Description" class="button-2">Learn More</a> | ||
+ | </div> | ||
+ | <!-- | ||
<div id="hero-image"> | <div id="hero-image"> | ||
<div class="wrapper"> | <div class="wrapper"> | ||
Line 63: | Line 114: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
+ | --> | ||
+ | <div class="wrapper"> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/a/ae/T--ICT-Mumbai--farming.svg" style="float: left; height: 250px; border-radius: 30px; margin: 30px; margin-top: 150px; margin-bottom: 30px;"></img> | ||
+ | <h1> | ||
+ | Challenges in Agriculture | ||
+ | </h1> | ||
+ | <p> | ||
+ | Agricultural practices followed by farmers in India are largely unsustainable and require the use of synthetic chemical fertilizers, pesticides and weedicides to ensure adequate plant nutrition, protect crops against various diseases and prevent growth of weeds, respectively. Excessive use of these chemicals lead to environmental pollution as well as a variety of health problems in the farming community. These facts are supported by the information gained from our <a href="https://2018.igem.org/Team:ICT-Mumbai/Human_Practices"><u>Human Practices</u></a> activities. Hence, there is a need for a solution that is easy to implement and moves Indian agriculture towards more sustainable practices. | ||
+ | </p> | ||
</div> | </div> | ||
− | </div> | + | <div> |
+ | <img src="https://static.igem.org/mediawiki/2018/4/43/T--ICT-Mumbai--sustainable.svg" style="float: right; height: 300px; border-radius: 30px; margin: 30px; margin-top: 150px; margin-bottom: 40px;"></img> | ||
+ | <h1> | ||
+ | Sustainable Agriculture and our project | ||
+ | </h1> | ||
+ | <p> | ||
+ | Plant root exudates can act as molecular signals for microorganisms in the rhizosphere, which can in turn modulate gene expression. To exploit this natural phenomenon and engineer microorganisms to sense and respond to plants, we are studying changes in gene expression in the common soil bacterium, <i>Bacillus subtilis</i>, in response to root exudates of rice, wheat, tomato and soybean plants. As a case study, we are constructing a <a href="https://2018.igem.org/Team:ICT-Mumbai/Design"><u>genetic amplification circuit</u></a> using an exudate-inducible promoter to produce phosphatase, which will help solubilize organic phosphate present in the soil, and thus reduce the requirement of inorganic phosphate fertilizers. This represents an advance toward smart soil management practices and sustainable agriculture. | ||
+ | </p> | ||
+ | </div> | ||
− | + | </div> | |
− | + | ||
+ | </div> | ||
</body> | </body> | ||
</html> | </html> |
Latest revision as of 02:41, 18 October 2018
Enabling soil bacteria to sense and respond to plant signals
Learn MoreChallenges in Agriculture
Agricultural practices followed by farmers in India are largely unsustainable and require the use of synthetic chemical fertilizers, pesticides and weedicides to ensure adequate plant nutrition, protect crops against various diseases and prevent growth of weeds, respectively. Excessive use of these chemicals lead to environmental pollution as well as a variety of health problems in the farming community. These facts are supported by the information gained from our Human Practices activities. Hence, there is a need for a solution that is easy to implement and moves Indian agriculture towards more sustainable practices.
Sustainable Agriculture and our project
Plant root exudates can act as molecular signals for microorganisms in the rhizosphere, which can in turn modulate gene expression. To exploit this natural phenomenon and engineer microorganisms to sense and respond to plants, we are studying changes in gene expression in the common soil bacterium, Bacillus subtilis, in response to root exudates of rice, wheat, tomato and soybean plants. As a case study, we are constructing a genetic amplification circuit using an exudate-inducible promoter to produce phosphatase, which will help solubilize organic phosphate present in the soil, and thus reduce the requirement of inorganic phosphate fertilizers. This represents an advance toward smart soil management practices and sustainable agriculture.