(60 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<head> | <head> | ||
<meta name="viewport" content="width=device-width, initial-scale=1"> | <meta name="viewport" content="width=device-width, initial-scale=1"> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<style type="text/css"> | <style type="text/css"> | ||
+ | |||
+ | |||
+ | /*GOOGLE FONTS*/ | ||
+ | |||
+ | /* latin */ | ||
+ | @font-face { | ||
+ | font-family: 'Dosis'; | ||
+ | font-style: normal; | ||
+ | font-weight: 400; | ||
+ | src: local('Dosis Regular'), local('Dosis-Regular'), url(https://static.igem.org/mediawiki/2018/4/4d/T--MIT--dosis2.woff) format('woff'); | ||
+ | unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; | ||
+ | } | ||
+ | |||
+ | /* latin */ | ||
+ | @font-face { | ||
+ | font-family: 'Raleway'; | ||
+ | font-style: normal; | ||
+ | font-weight: 400; | ||
+ | src: local('Raleway'), local('Raleway-Regular'), url(https://static.igem.org/mediawiki/2018/5/59/T--MIT--raleway2.woff) format('woff'); | ||
+ | unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
+ | /* W3.CSS 4.10 February 2018 by Jan Egil and Borge Refsnes */ | ||
+ | html{box-sizing:border-box}*,*:before,*:after{box-sizing:inherit} | ||
+ | /* Extract from normalize.css by Nicolas Gallagher and Jonathan Neal git.io/normalize */ | ||
+ | html{-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}body{margin:0} | ||
+ | article,aside,details,figcaption,figure,footer,header,main,menu,nav,section,summary{display:block} | ||
+ | audio,canvas,progress,video{display:inline-block}progress{vertical-align:baseline} | ||
+ | audio:not([controls]){display:none;height:0}[hidden],template{display:none} | ||
+ | a{background-color:transparent;-webkit-text-decoration-skip:objects} | ||
+ | a:active,a:hover{outline-width:0}abbr[title]{border-bottom:none;text-decoration:underline;text-decoration:underline dotted} | ||
+ | dfn{font-style:italic}mark{background:#ff0;color:#000} | ||
+ | small{font-size:80%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline} | ||
+ | sub{bottom:-0.25em}sup{top:-0.5em}figure{margin:1em 40px}img{border-style:none}svg:not(:root){overflow:hidden} | ||
+ | code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}hr{box-sizing:content-box;height:0;overflow:visible} | ||
+ | button,input,select,textarea{font:inherit;margin:0}optgroup{font-weight:bold} | ||
+ | button,input{overflow:visible}button,select{text-transform:none} | ||
+ | button,html [type=button],[type=reset],[type=submit]{-webkit-appearance:button} | ||
+ | button::-moz-focus-inner, [type=button]::-moz-focus-inner, [type=reset]::-moz-focus-inner, [type=submit]::-moz-focus-inner{border-style:none;padding:0} | ||
+ | button:-moz-focusring, [type=button]:-moz-focusring, [type=reset]:-moz-focusring, [type=submit]:-moz-focusring{outline:1px dotted ButtonText} | ||
+ | fieldset{border:1px solid #c0c0c0;margin:0 2px;padding:.35em .625em .75em} | ||
+ | legend{color:inherit;display:table;max-width:100%;padding:0;white-space:normal}textarea{overflow:auto} | ||
+ | [type=checkbox],[type=radio]{padding:0} | ||
+ | [type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto} | ||
+ | [type=search]{-webkit-appearance:textfield;outline-offset:-2px} | ||
+ | [type=search]::-webkit-search-cancel-button,[type=search]::-webkit-search-decoration{-webkit-appearance:none} | ||
+ | ::-webkit-input-placeholder{color:inherit;opacity:0.54} | ||
+ | ::-webkit-file-upload-button{-webkit-appearance:button;font:inherit} | ||
+ | /* End extract */ | ||
+ | html,body{font-family:Verdana,sans-serif;font-size:15px;line-height:1.5}html{overflow-x:hidden} | ||
+ | h1{font-size:36px}h2{font-size:30px}h3{font-size:24px}h4{font-size:20px}h5{font-size:18px}h6{font-size:16px}.w3-serif{font-family:serif} | ||
+ | h1,h2,h3,h4,h5,h6{font-family:"Segoe UI",Arial,sans-serif;font-weight:400;margin:10px 0}.w3-wide{letter-spacing:4px} | ||
+ | hr{border:0;border-top:1px solid #eee;margin:20px 0} | ||
+ | .w3-image{max-width:100%;height:auto}img{vertical-align:middle}a{color:inherit} | ||
+ | .w3-table,.w3-table-all{border-collapse:collapse;border-spacing:0;width:100%;display:table}.w3-table-all{border:1px solid #ccc} | ||
+ | .w3-bordered tr,.w3-table-all tr{border-bottom:1px solid #ddd}.w3-striped tbody tr:nth-child(even){background-color:#f1f1f1} | ||
+ | .w3-table-all tr:nth-child(odd){background-color:#fff}.w3-table-all tr:nth-child(even){background-color:#f1f1f1} | ||
+ | .w3-hoverable tbody tr:hover,.w3-ul.w3-hoverable li:hover{background-color:#ccc}.w3-centered tr th,.w3-centered tr td{text-align:center} | ||
+ | .w3-table td,.w3-table th,.w3-table-all td,.w3-table-all th{padding:8px 8px;display:table-cell;text-align:left;vertical-align:top} | ||
+ | .w3-table th:first-child,.w3-table td:first-child,.w3-table-all th:first-child,.w3-table-all td:first-child{padding-left:16px} | ||
+ | .w3-btn,.w3-button{border:none;display:inline-block;padding:8px 16px;vertical-align:middle;overflow:hidden;text-decoration:none;color:inherit;background-color:inherit;text-align:center;cursor:pointer;white-space:nowrap} | ||
+ | .w3-btn:hover{box-shadow:0 8px 16px 0 rgba(0,0,0,0.2),0 6px 20px 0 rgba(0,0,0,0.19)} | ||
+ | .w3-btn,.w3-button{-webkit-touch-callout:none;-webkit-user-select:none;-khtml-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none} | ||
+ | .w3-disabled,.w3-btn:disabled,.w3-button:disabled{cursor:not-allowed;opacity:0.3}.w3-disabled *,:disabled *{pointer-events:none} | ||
+ | .w3-btn.w3-disabled:hover,.w3-btn:disabled:hover{box-shadow:none} | ||
+ | .w3-badge,.w3-tag{background-color:#000;color:#fff;display:inline-block;padding-left:8px;padding-right:8px;text-align:center}.w3-badge{border-radius:50%} | ||
+ | .w3-ul{list-style-type:none;padding:0;margin:0}.w3-ul li{padding:8px 16px;border-bottom:1px solid #ddd}.w3-ul li:last-child{border-bottom:none} | ||
+ | .w3-tooltip,.w3-display-container{position:relative}.w3-tooltip .w3-text{display:none}.w3-tooltip:hover .w3-text{display:inline-block} | ||
+ | .w3-ripple:active{opacity:0.5}.w3-ripple{transition:opacity 0s} | ||
+ | .w3-input{padding:8px;display:block;border:none;border-bottom:1px solid #ccc;width:100%} | ||
+ | .w3-select{padding:9px 0;width:100%;border:none;border-bottom:1px solid #ccc} | ||
+ | .w3-dropdown-click,.w3-dropdown-hover{position:relative;display:inline-block;cursor:pointer} | ||
+ | .w3-dropdown-hover:hover .w3-dropdown-content{display:block} | ||
+ | .w3-dropdown-hover:first-child,.w3-dropdown-click:hover{background-color:#ccc;color:#000} | ||
+ | .w3-dropdown-hover:hover > .w3-button:first-child,.w3-dropdown-click:hover > .w3-button:first-child{background-color:#ccc;color:#000} | ||
+ | .w3-dropdown-content{cursor:auto;color:#000;background-color:#fff;display:none;position:absolute;min-width:160px;margin:0;padding:0;z-index:1} | ||
+ | .w3-check,.w3-radio{width:24px;height:24px;position:relative;top:6px} | ||
+ | .w3-sidebar{height:100%;width:200px;background-color:#fff;position:fixed!important;z-index:1;overflow:auto} | ||
+ | .w3-bar-block .w3-dropdown-hover,.w3-bar-block .w3-dropdown-click{width:100%} | ||
+ | .w3-bar-block .w3-dropdown-hover .w3-dropdown-content,.w3-bar-block .w3-dropdown-click .w3-dropdown-content{min-width:100%} | ||
+ | .w3-bar-block .w3-dropdown-hover .w3-button,.w3-bar-block .w3-dropdown-click .w3-button{width:100%;text-align:left;padding:8px 16px} | ||
+ | .w3-main,#main{transition:margin-left .4s} | ||
+ | .w3-modal{z-index:3;display:none;padding-top:100px;position:fixed;left:0;top:0;width:100%;height:100%;overflow:auto;background-color:rgb(0,0,0);background-color:rgba(0,0,0,0.4)} | ||
+ | .w3-modal-content{margin:auto;background-color:#fff;position:relative;padding:0;outline:0;width:600px} | ||
+ | .w3-bar{width:100%;overflow:hidden}.w3-center .w3-bar{display:inline-block;width:auto} | ||
+ | .w3-bar .w3-bar-item{padding:8px 16px;float:left;width:auto;border:none;display:block;outline:0} | ||
+ | .w3-bar .w3-dropdown-hover,.w3-bar .w3-dropdown-click{position:static;float:left} | ||
+ | .w3-bar .w3-button{white-space:normal} | ||
+ | .w3-bar-block .w3-bar-item{width:100%;display:block;padding:8px 16px;text-align:left;border:none;white-space:normal;float:none;outline:0} | ||
+ | .w3-bar-block.w3-center .w3-bar-item{text-align:center}.w3-block{display:block;width:100%} | ||
+ | .w3-responsive{display:block;overflow-x:auto} | ||
+ | .w3-container:after,.w3-container:before,.w3-panel:after,.w3-panel:before,.w3-row:after,.w3-row:before,.w3-row-padding:after,.w3-row-padding:before, | ||
+ | .w3-cell-row:before,.w3-cell-row:after,.w3-clear:after,.w3-clear:before,.w3-bar:before,.w3-bar:after{content:"";display:table;clear:both} | ||
+ | .w3-col,.w3-half,.w3-third,.w3-twothird,.w3-threequarter,.w3-quarter{float:left;width:100%} | ||
+ | .w3-col.s1{width:8.33333%}.w3-col.s2{width:16.66666%}.w3-col.s3{width:24.99999%}.w3-col.s4{width:33.33333%} | ||
+ | .w3-col.s5{width:41.66666%}.w3-col.s6{width:49.99999%}.w3-col.s7{width:58.33333%}.w3-col.s8{width:66.66666%} | ||
+ | .w3-col.s9{width:74.99999%}.w3-col.s10{width:83.33333%}.w3-col.s11{width:91.66666%}.w3-col.s12{width:99.99999%} | ||
+ | @media (min-width:601px){.w3-col.m1{width:8.33333%}.w3-col.m2{width:16.66666%}.w3-col.m3,.w3-quarter{width:24.99999%}.w3-col.m4,.w3-third{width:33.33333%} | ||
+ | .w3-col.m5{width:41.66666%}.w3-col.m6,.w3-half{width:49.99999%}.w3-col.m7{width:58.33333%}.w3-col.m8,.w3-twothird{width:66.66666%} | ||
+ | .w3-col.m9,.w3-threequarter{width:74.99999%}.w3-col.m10{width:83.33333%}.w3-col.m11{width:91.66666%}.w3-col.m12{width:99.99999%}} | ||
+ | @media (min-width:993px){.w3-col.l1{width:8.33333%}.w3-col.l2{width:16.66666%}.w3-col.l3{width:24.99999%}.w3-col.l4{width:33.33333%} | ||
+ | .w3-col.l5{width:41.66666%}.w3-col.l6{width:49.99999%}.w3-col.l7{width:58.33333%}.w3-col.l8{width:66.66666%} | ||
+ | .w3-col.l9{width:74.99999%}.w3-col.l10{width:83.33333%}.w3-col.l11{width:91.66666%}.w3-col.l12{width:99.99999%}} | ||
+ | .w3-content{max-width:980px;margin:auto}.w3-rest{overflow:hidden} | ||
+ | .w3-cell-row{display:table;width:100%}.w3-cell{display:table-cell} | ||
+ | .w3-cell-top{vertical-align:top}.w3-cell-middle{vertical-align:middle}.w3-cell-bottom{vertical-align:bottom} | ||
+ | .w3-hide{display:none!important}.w3-show-block,.w3-show{display:block!important}.w3-show-inline-block{display:inline-block!important} | ||
+ | @media (max-width:600px){.w3-modal-content{margin:0 10px;width:auto!important}.w3-modal{padding-top:30px} | ||
+ | .w3-dropdown-hover.w3-mobile .w3-dropdown-content,.w3-dropdown-click.w3-mobile .w3-dropdown-content{position:relative} | ||
+ | .w3-hide-small{display:none!important}.w3-mobile{display:block;width:100%!important}.w3-bar-item.w3-mobile,.w3-dropdown-hover.w3-mobile,.w3-dropdown-click.w3-mobile{text-align:center} | ||
+ | .w3-dropdown-hover.w3-mobile,.w3-dropdown-hover.w3-mobile .w3-btn,.w3-dropdown-hover.w3-mobile .w3-button,.w3-dropdown-click.w3-mobile,.w3-dropdown-click.w3-mobile .w3-btn,.w3-dropdown-click.w3-mobile .w3-button{width:100%}} | ||
+ | @media (max-width:768px){.w3-modal-content{width:500px}.w3-modal{padding-top:50px}} | ||
+ | @media (min-width:993px){.w3-modal-content{width:900px}.w3-hide-large{display:none!important}.w3-sidebar.w3-collapse{display:block!important}} | ||
+ | @media (max-width:992px) and (min-width:601px){.w3-hide-medium{display:none!important}} | ||
+ | @media (max-width:992px){.w3-sidebar.w3-collapse{display:none}.w3-main{margin-left:0!important;margin-right:0!important}} | ||
+ | .w3-top,.w3-bottom{position:fixed;width:100%;z-index:1}.w3-top{top:0}.w3-bottom{bottom:0} | ||
+ | .w3-overlay{position:fixed;display:none;width:100%;height:100%;top:0;left:0;right:0;bottom:0;background-color:rgba(0,0,0,0.5);z-index:2} | ||
+ | .w3-display-topleft{position:absolute;left:0;top:0}.w3-display-topright{position:absolute;right:0;top:0} | ||
+ | .w3-display-bottomleft{position:absolute;left:0;bottom:0}.w3-display-bottomright{position:absolute;right:0;bottom:0} | ||
+ | .w3-display-middle{position:absolute;top:50%;left:50%;transform:translate(-50%,-50%);-ms-transform:translate(-50%,-50%)} | ||
+ | .w3-display-left{position:absolute;top:50%;left:0%;transform:translate(0%,-50%);-ms-transform:translate(-0%,-50%)} | ||
+ | .w3-display-right{position:absolute;top:50%;right:0%;transform:translate(0%,-50%);-ms-transform:translate(0%,-50%)} | ||
+ | .w3-display-topmiddle{position:absolute;left:50%;top:0;transform:translate(-50%,0%);-ms-transform:translate(-50%,0%)} | ||
+ | .w3-display-bottommiddle{position:absolute;left:50%;bottom:0;transform:translate(-50%,0%);-ms-transform:translate(-50%,0%)} | ||
+ | .w3-display-container:hover .w3-display-hover{display:block}.w3-display-container:hover span.w3-display-hover{display:inline-block}.w3-display-hover{display:none} | ||
+ | .w3-display-position{position:absolute} | ||
+ | .w3-circle{border-radius:50%} | ||
+ | .w3-round-small{border-radius:2px}.w3-round,.w3-round-medium{border-radius:4px}.w3-round-large{border-radius:8px}.w3-round-xlarge{border-radius:16px}.w3-round-xxlarge{border-radius:32px} | ||
+ | .w3-row-padding,.w3-row-padding>.w3-half,.w3-row-padding>.w3-third,.w3-row-padding>.w3-twothird,.w3-row-padding>.w3-threequarter,.w3-row-padding>.w3-quarter,.w3-row-padding>.w3-col{padding:0 8px} | ||
+ | .w3-container,.w3-panel{padding:0.01em 16px}.w3-panel{margin-top:16px;margin-bottom:16px} | ||
+ | .w3-code,.w3-codespan{font-family:Consolas,"courier new";font-size:16px} | ||
+ | .w3-code{width:auto;background-color:#fff;padding:8px 12px;border-left:4px solid #4CAF50;word-wrap:break-word} | ||
+ | .w3-codespan{color:crimson;background-color:#f1f1f1;padding-left:4px;padding-right:4px;font-size:110%} | ||
+ | .w3-card,.w3-card-2{box-shadow:0 2px 5px 0 rgba(0,0,0,0.16),0 2px 10px 0 rgba(0,0,0,0.12)} | ||
+ | .w3-card-4,.w3-hover-shadow:hover{box-shadow:0 4px 10px 0 rgba(0,0,0,0.2),0 4px 20px 0 rgba(0,0,0,0.19)} | ||
+ | .w3-spin{animation:w3-spin 2s infinite linear}@keyframes w3-spin{0%{transform:rotate(0deg)}100%{transform:rotate(359deg)}} | ||
+ | .w3-animate-fading{animation:fading 10s infinite}@keyframes fading{0%{opacity:0}50%{opacity:1}100%{opacity:0}} | ||
+ | .w3-animate-opacity{animation:opac 0.8s}@keyframes opac{from{opacity:0} to{opacity:1}} | ||
+ | .w3-animate-top{position:relative;animation:animatetop 0.4s}@keyframes animatetop{from{top:-300px;opacity:0} to{top:0;opacity:1}} | ||
+ | .w3-animate-left{position:relative;animation:animateleft 0.4s}@keyframes animateleft{from{left:-300px;opacity:0} to{left:0;opacity:1}} | ||
+ | .w3-animate-right{position:relative;animation:animateright 0.4s}@keyframes animateright{from{right:-300px;opacity:0} to{right:0;opacity:1}} | ||
+ | .w3-animate-bottom{position:relative;animation:animatebottom 0.4s}@keyframes animatebottom{from{bottom:-300px;opacity:0} to{bottom:0;opacity:1}} | ||
+ | .w3-animate-zoom {animation:animatezoom 0.6s}@keyframes animatezoom{from{transform:scale(0)} to{transform:scale(1)}} | ||
+ | .w3-animate-input{transition:width 0.4s ease-in-out}.w3-animate-input:focus{width:100%!important} | ||
+ | .w3-opacity,.w3-hover-opacity:hover{opacity:0.60}.w3-opacity-off,.w3-hover-opacity-off:hover{opacity:1} | ||
+ | .w3-opacity-max{opacity:0.25}.w3-opacity-min{opacity:0.75} | ||
+ | .w3-greyscale-max,.w3-grayscale-max,.w3-hover-greyscale:hover,.w3-hover-grayscale:hover{filter:grayscale(100%)} | ||
+ | .w3-greyscale,.w3-grayscale{filter:grayscale(75%)}.w3-greyscale-min,.w3-grayscale-min{filter:grayscale(50%)} | ||
+ | .w3-sepia{filter:sepia(75%)}.w3-sepia-max,.w3-hover-sepia:hover{filter:sepia(100%)}.w3-sepia-min{filter:sepia(50%)} | ||
+ | .w3-tiny{font-size:10px!important}.w3-small{font-size:12px!important}.w3-medium{font-size:15px!important}.w3-large{font-size:18px!important} | ||
+ | .w3-xlarge{font-size:24px!important}.w3-xxlarge{font-size:36px!important}.w3-xxxlarge{font-size:48px!important}.w3-jumbo{font-size:64px!important} | ||
+ | .w3-left-align{text-align:left!important}.w3-right-align{text-align:right!important}.w3-justify{text-align:justify!important}.w3-center{text-align:center!important} | ||
+ | .w3-border-0{border:0!important}.w3-border{border:1px solid #ccc!important} | ||
+ | .w3-border-top{border-top:1px solid #ccc!important}.w3-border-bottom{border-bottom:1px solid #ccc!important} | ||
+ | .w3-border-left{border-left:1px solid #ccc!important}.w3-border-right{border-right:1px solid #ccc!important} | ||
+ | .w3-topbar{border-top:6px solid #ccc!important}.w3-bottombar{border-bottom:6px solid #ccc!important} | ||
+ | .w3-leftbar{border-left:6px solid #ccc!important}.w3-rightbar{border-right:6px solid #ccc!important} | ||
+ | .w3-section,.w3-code{margin-top:16px!important;margin-bottom:16px!important} | ||
+ | .w3-margin{margin:16px!important}.w3-margin-top{margin-top:16px!important}.w3-margin-bottom{margin-bottom:16px!important} | ||
+ | .w3-margin-left{margin-left:16px!important}.w3-margin-right{margin-right:16px!important} | ||
+ | .w3-padding-small{padding:4px 8px!important}.w3-padding{padding:8px 16px!important}.w3-padding-large{padding:12px 24px!important} | ||
+ | .w3-padding-16{padding-top:16px!important;padding-bottom:16px!important}.w3-padding-24{padding-top:24px!important;padding-bottom:24px!important} | ||
+ | .w3-padding-32{padding-top:32px!important;padding-bottom:32px!important}.w3-padding-48{padding-top:48px!important;padding-bottom:48px!important} | ||
+ | .w3-padding-64{padding-top:64px!important;padding-bottom:64px!important} | ||
+ | .w3-left{float:left!important}.w3-right{float:right!important} | ||
+ | .w3-button:hover{color:#000!important;background-color:#ccc!important} | ||
+ | .w3-transparent,.w3-hover-none:hover{background-color:transparent!important} | ||
+ | .w3-hover-none:hover{box-shadow:none!important} | ||
+ | /* Colors */ | ||
+ | .w3-amber,.w3-hover-amber:hover{color:#000!important;background-color:#ffc107!important} | ||
+ | .w3-aqua,.w3-hover-aqua:hover{color:#000!important;background-color:#00ffff!important} | ||
+ | .w3-blue,.w3-hover-blue:hover{color:#fff!important;background-color:#2196F3!important} | ||
+ | .w3-light-blue,.w3-hover-light-blue:hover{color:#000!important;background-color:#87CEEB!important} | ||
+ | .w3-brown,.w3-hover-brown:hover{color:#fff!important;background-color:#795548!important} | ||
+ | .w3-cyan,.w3-hover-cyan:hover{color:#000!important;background-color:#00bcd4!important} | ||
+ | .w3-blue-grey,.w3-hover-blue-grey:hover,.w3-blue-gray,.w3-hover-blue-gray:hover{color:#fff!important;background-color:#607d8b!important} | ||
+ | .w3-green,.w3-hover-green:hover{color:#fff!important;background-color:#4CAF50!important} | ||
+ | .w3-light-green,.w3-hover-light-green:hover{color:#000!important;background-color:#8bc34a!important} | ||
+ | .w3-indigo,.w3-hover-indigo:hover{color:#fff!important;background-color:#3f51b5!important} | ||
+ | .w3-khaki,.w3-hover-khaki:hover{color:#000!important;background-color:#f0e68c!important} | ||
+ | .w3-lime,.w3-hover-lime:hover{color:#000!important;background-color:#cddc39!important} | ||
+ | .w3-orange,.w3-hover-orange:hover{color:#000!important;background-color:#ff9800!important} | ||
+ | .w3-deep-orange,.w3-hover-deep-orange:hover{color:#fff!important;background-color:#ff5722!important} | ||
+ | .w3-pink,.w3-hover-pink:hover{color:#fff!important;background-color:#e91e63!important} | ||
+ | .w3-purple,.w3-hover-purple:hover{color:#fff!important;background-color:#9c27b0!important} | ||
+ | .w3-deep-purple,.w3-hover-deep-purple:hover{color:#fff!important;background-color:#673ab7!important} | ||
+ | .w3-red,.w3-hover-red:hover{color:#fff!important;background-color:#f44336!important} | ||
+ | .w3-sand,.w3-hover-sand:hover{color:#000!important;background-color:#fdf5e6!important} | ||
+ | .w3-teal,.w3-hover-teal:hover{color:#fff!important;background-color:#009688!important} | ||
+ | .w3-yellow,.w3-hover-yellow:hover{color:#000!important;background-color:#ffeb3b!important} | ||
+ | .w3-white,.w3-hover-white:hover{color:#000!important;background-color:#fff!important} | ||
+ | .w3-black,.w3-hover-black:hover{color:#fff!important;background-color:#000!important} | ||
+ | .w3-grey,.w3-hover-grey:hover,.w3-gray,.w3-hover-gray:hover{color:#000!important;background-color:#9e9e9e!important} | ||
+ | .w3-light-grey,.w3-hover-light-grey:hover,.w3-light-gray,.w3-hover-light-gray:hover{color:#000!important;background-color:#f1f1f1!important} | ||
+ | .w3-dark-grey,.w3-hover-dark-grey:hover,.w3-dark-gray,.w3-hover-dark-gray:hover{color:#fff!important;background-color:#616161!important} | ||
+ | .w3-pale-red,.w3-hover-pale-red:hover{color:#000!important;background-color:#ffdddd!important} | ||
+ | .w3-pale-green,.w3-hover-pale-green:hover{color:#000!important;background-color:#ddffdd!important} | ||
+ | .w3-pale-yellow,.w3-hover-pale-yellow:hover{color:#000!important;background-color:#ffffcc!important} | ||
+ | .w3-pale-blue,.w3-hover-pale-blue:hover{color:#000!important;background-color:#ddffff!important} | ||
+ | .w3-text-amber,.w3-hover-text-amber:hover{color:#ffc107!important} | ||
+ | .w3-text-aqua,.w3-hover-text-aqua:hover{color:#00ffff!important} | ||
+ | .w3-text-blue,.w3-hover-text-blue:hover{color:#2196F3!important} | ||
+ | .w3-text-light-blue,.w3-hover-text-light-blue:hover{color:#87CEEB!important} | ||
+ | .w3-text-brown,.w3-hover-text-brown:hover{color:#795548!important} | ||
+ | .w3-text-cyan,.w3-hover-text-cyan:hover{color:#00bcd4!important} | ||
+ | .w3-text-blue-grey,.w3-hover-text-blue-grey:hover,.w3-text-blue-gray,.w3-hover-text-blue-gray:hover{color:#607d8b!important} | ||
+ | .w3-text-green,.w3-hover-text-green:hover{color:#4CAF50!important} | ||
+ | .w3-text-light-green,.w3-hover-text-light-green:hover{color:#8bc34a!important} | ||
+ | .w3-text-indigo,.w3-hover-text-indigo:hover{color:#3f51b5!important} | ||
+ | .w3-text-khaki,.w3-hover-text-khaki:hover{color:#b4aa50!important} | ||
+ | .w3-text-lime,.w3-hover-text-lime:hover{color:#cddc39!important} | ||
+ | .w3-text-orange,.w3-hover-text-orange:hover{color:#ff9800!important} | ||
+ | .w3-text-deep-orange,.w3-hover-text-deep-orange:hover{color:#ff5722!important} | ||
+ | .w3-text-pink,.w3-hover-text-pink:hover{color:#e91e63!important} | ||
+ | .w3-text-purple,.w3-hover-text-purple:hover{color:#9c27b0!important} | ||
+ | .w3-text-deep-purple,.w3-hover-text-deep-purple:hover{color:#673ab7!important} | ||
+ | .w3-text-red,.w3-hover-text-red:hover{color:#f44336!important} | ||
+ | .w3-text-sand,.w3-hover-text-sand:hover{color:#fdf5e6!important} | ||
+ | .w3-text-teal,.w3-hover-text-teal:hover{color:#009688!important} | ||
+ | .w3-text-yellow,.w3-hover-text-yellow:hover{color:#d2be0e!important} | ||
+ | .w3-text-white,.w3-hover-text-white:hover{color:#fff!important} | ||
+ | .w3-text-black,.w3-hover-text-black:hover{color:#000!important} | ||
+ | .w3-text-grey,.w3-hover-text-grey:hover,.w3-text-gray,.w3-hover-text-gray:hover{color:#757575!important} | ||
+ | .w3-text-light-grey,.w3-hover-text-light-grey:hover,.w3-text-light-gray,.w3-hover-text-light-gray:hover{color:#f1f1f1!important} | ||
+ | .w3-text-dark-grey,.w3-hover-text-dark-grey:hover,.w3-text-dark-gray,.w3-hover-text-dark-gray:hover{color:#3a3a3a!important} | ||
+ | .w3-border-amber,.w3-hover-border-amber:hover{border-color:#ffc107!important} | ||
+ | .w3-border-aqua,.w3-hover-border-aqua:hover{border-color:#00ffff!important} | ||
+ | .w3-border-blue,.w3-hover-border-blue:hover{border-color:#2196F3!important} | ||
+ | .w3-border-light-blue,.w3-hover-border-light-blue:hover{border-color:#87CEEB!important} | ||
+ | .w3-border-brown,.w3-hover-border-brown:hover{border-color:#795548!important} | ||
+ | .w3-border-cyan,.w3-hover-border-cyan:hover{border-color:#00bcd4!important} | ||
+ | .w3-border-blue-grey,.w3-hover-border-blue-grey:hover,.w3-border-blue-gray,.w3-hover-border-blue-gray:hover{border-color:#607d8b!important} | ||
+ | .w3-border-green,.w3-hover-border-green:hover{border-color:#4CAF50!important} | ||
+ | .w3-border-light-green,.w3-hover-border-light-green:hover{border-color:#8bc34a!important} | ||
+ | .w3-border-indigo,.w3-hover-border-indigo:hover{border-color:#3f51b5!important} | ||
+ | .w3-border-khaki,.w3-hover-border-khaki:hover{border-color:#f0e68c!important} | ||
+ | .w3-border-lime,.w3-hover-border-lime:hover{border-color:#cddc39!important} | ||
+ | .w3-border-orange,.w3-hover-border-orange:hover{border-color:#ff9800!important} | ||
+ | .w3-border-deep-orange,.w3-hover-border-deep-orange:hover{border-color:#ff5722!important} | ||
+ | .w3-border-pink,.w3-hover-border-pink:hover{border-color:#e91e63!important} | ||
+ | .w3-border-purple,.w3-hover-border-purple:hover{border-color:#9c27b0!important} | ||
+ | .w3-border-deep-purple,.w3-hover-border-deep-purple:hover{border-color:#673ab7!important} | ||
+ | .w3-border-red,.w3-hover-border-red:hover{border-color:#f44336!important} | ||
+ | .w3-border-sand,.w3-hover-border-sand:hover{border-color:#fdf5e6!important} | ||
+ | .w3-border-teal,.w3-hover-border-teal:hover{border-color:#009688!important} | ||
+ | .w3-border-yellow,.w3-hover-border-yellow:hover{border-color:#ffeb3b!important} | ||
+ | .w3-border-white,.w3-hover-border-white:hover{border-color:#fff!important} | ||
+ | .w3-border-black,.w3-hover-border-black:hover{border-color:#000!important} | ||
+ | .w3-border-grey,.w3-hover-border-grey:hover,.w3-border-gray,.w3-hover-border-gray:hover{border-color:#9e9e9e!important} | ||
+ | .w3-border-light-grey,.w3-hover-border-light-grey:hover,.w3-border-light-gray,.w3-hover-border-light-gray:hover{border-color:#f1f1f1!important} | ||
+ | .w3-border-dark-grey,.w3-hover-border-dark-grey:hover,.w3-border-dark-gray,.w3-hover-border-dark-gray:hover{border-color:#616161!important} | ||
+ | .w3-border-pale-red,.w3-hover-border-pale-red:hover{border-color:#ffe7e7!important}.w3-border-pale-green,.w3-hover-border-pale-green:hover{border-color:#e7ffe7!important} | ||
+ | .w3-border-pale-yellow,.w3-hover-border-pale-yellow:hover{border-color:#ffffcc!important}.w3-border-pale-blue,.w3-hover-border-pale-blue:hover{border-color:#e7ffff!important} | ||
+ | |||
#contentSub, #footer-box, #catlinks, #search-controls, #p-logo, #sideMenu, #menubar, .logo_2017, .printfooter, .firstHeading,.visualClear { | #contentSub, #footer-box, #catlinks, #search-controls, #p-logo, #sideMenu, #menubar, .logo_2017, .printfooter, .firstHeading,.visualClear { | ||
display: none; | display: none; | ||
Line 13: | Line 266: | ||
#top-section { /*-- styling for default menu bar (edit, page, history, etc.) --*/ | #top-section { /*-- styling for default menu bar (edit, page, history, etc.) --*/ | ||
border: 0 none; | border: 0 none; | ||
− | height: | + | height: 3vw; |
z-index: 100; | z-index: 100; | ||
top: 0; | top: 0; | ||
Line 49: | Line 302: | ||
.menu { | .menu { | ||
list-style-type: none; | list-style-type: none; | ||
− | margin: | + | margin: 0vw; |
− | padding: | + | padding: .3vw; |
/*overflow: hidden;*/ | /*overflow: hidden;*/ | ||
background-color: #333; | background-color: #333; | ||
position: fixed; | position: fixed; | ||
width: 100%; | width: 100%; | ||
+ | height: 4.5vw; | ||
-webkit-box-shadow: 0 8px 6px -6px #2c2c2c; | -webkit-box-shadow: 0 8px 6px -6px #2c2c2c; | ||
-moz-box-shadow: 0 8px 6px -6px #2c2c2c; | -moz-box-shadow: 0 8px 6px -6px #2c2c2c; | ||
Line 65: | Line 319: | ||
font-family: 'Dosis', sans-serif;; | font-family: 'Dosis', sans-serif;; | ||
font-size: 1.5vw; | font-size: 1.5vw; | ||
− | + | float: left; | |
+ | height: 4.5vw; | ||
+ | |||
} | } | ||
Line 72: | Line 328: | ||
color: white; | color: white; | ||
text-align: center; | text-align: center; | ||
− | padding: | + | padding: 1vw 1.5vw; |
text-decoration: none; | text-decoration: none; | ||
} | } | ||
Line 80: | Line 336: | ||
} | } | ||
− | . | + | .activemenu { |
background-color: #9055ff; | background-color: #9055ff; | ||
} | } | ||
Line 94: | Line 350: | ||
display: none; | display: none; | ||
position: absolute; | position: absolute; | ||
− | top: | + | top: 4vw; |
background-color: #2c2c2c; | background-color: #2c2c2c; | ||
− | min-width: | + | min-width: 10vw; |
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); | box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); | ||
z-index: 1; | z-index: 1; | ||
Line 103: | Line 359: | ||
.dropdown-content a { | .dropdown-content a { | ||
color: white; | color: white; | ||
− | padding: | + | padding: .6vw .9vw; |
text-decoration: none; | text-decoration: none; | ||
display: block; | display: block; | ||
Line 112: | Line 368: | ||
.dropdown:hover .dropdown-content {display: block;} | .dropdown:hover .dropdown-content {display: block;} | ||
− | |||
− | |||
− | |||
− | + | .MIT-content { | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
font-family: "Times New Roman", Times, serif; | font-family: "Times New Roman", Times, serif; | ||
padding: 14px 16px; | padding: 14px 16px; | ||
Line 129: | Line 376: | ||
#project-overview { | #project-overview { | ||
text-indent: 50px; | text-indent: 50px; | ||
− | } | + | } |
.cmr-5{font-size:50%;} | .cmr-5{font-size:50%;} | ||
.cmr-7{font-family: 'Raleway', sans-serif;;font-size:70%;} | .cmr-7{font-family: 'Raleway', sans-serif;;font-size:70%;} | ||
Line 145: | Line 392: | ||
.ecti-1728{ font-style: italic;} | .ecti-1728{ font-style: italic;} | ||
.ecrm-1200{font-size:120%;} | .ecrm-1200{font-size:120%;} | ||
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
− | .ectt-1000{ font-family: | + | .ectt-1000{ font-family: 'Raleway', sans-serif;;} |
.ecti-1000{ font-family: 'Raleway', sans-serif;;font-style: italic;} | .ecti-1000{ font-family: 'Raleway', sans-serif;;font-style: italic;} | ||
.ecti-1000{ font-family: 'Raleway', sans-serif;;font-style: italic;} | .ecti-1000{ font-family: 'Raleway', sans-serif;;font-style: italic;} | ||
Line 248: | Line 495: | ||
div.caption {text-indent:-2em; margin-left:3em; margin-right:1em; text-align:left;} | div.caption {text-indent:-2em; margin-left:3em; margin-right:1em; text-align:left;} | ||
div.caption span.id{font-family: 'Raleway', sans-serif;;font-weight: bold; white-space: nowrap; } | div.caption span.id{font-family: 'Raleway', sans-serif;;font-weight: bold; white-space: nowrap; } | ||
− | h1.partHead{text-align: center} | + | h1.partHead{text-align: center} |
p.bibitem { text-indent: -2em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } | p.bibitem { text-indent: -2em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } | ||
p.bibitem-p { text-indent: 0em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } | p.bibitem-p { text-indent: 0em; margin-left: 2em; margin-top:0.6em; margin-bottom:0.6em; } | ||
Line 289: | Line 536: | ||
#TBL-2{border-collapse:collapse;} | #TBL-2{border-collapse:collapse;} | ||
/* end css.sty */ | /* end css.sty */ | ||
− | + | ||
+ | h4{ | ||
font-family: 'Raleway', sans-serif;; | font-family: 'Raleway', sans-serif;; | ||
font-size: 1.3vw; | font-size: 1.3vw; | ||
} | } | ||
− | + | span{ | |
font-family: 'Raleway', sans-serif;; | font-family: 'Raleway', sans-serif;; | ||
font-size: 1.3vw; | font-size: 1.3vw; | ||
− | } | + | } |
− | + | .panel{ | |
font-family: 'Raleway', sans-serif;; | font-family: 'Raleway', sans-serif;; | ||
font-size: 1.3vw; | font-size: 1.3vw; | ||
− | } | + | } |
− | + | .accordion1 { | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | . | + | |
font-family: 'Dosis', sans-serif;; | font-family: 'Dosis', sans-serif;; | ||
font-size: 1.5vw; | font-size: 1.5vw; | ||
Line 320: | Line 563: | ||
} | } | ||
− | + | .active, .accordion1:hover { | |
background-color: #202020; | background-color: #202020; | ||
} | } | ||
− | . | + | .accordion1:after { |
content: '\002B'; | content: '\002B'; | ||
color: #777; | color: #777; | ||
Line 334: | Line 577: | ||
.active:after { | .active:after { | ||
content: "\2212"; | content: "\2212"; | ||
− | } | + | } |
.panel { | .panel { | ||
Line 343: | Line 586: | ||
transition: max-height 0.2s ease-out; | transition: max-height 0.2s ease-out; | ||
} | } | ||
− | + | ||
+ | body{ | ||
+ | margin-top: 4.2vw; | ||
+ | |||
+ | } | ||
+ | .h3{ | ||
color: white; | color: white; | ||
font-family: 'Dosis', sans-serif;; | font-family: 'Dosis', sans-serif;; | ||
font-size: 8vw; | font-size: 8vw; | ||
− | left: 3vw; | + | position: absolute; |
+ | left: 2vw; | ||
+ | top: 3vw; | ||
z-index: 5; | z-index: 5; | ||
} | } | ||
Line 356: | Line 606: | ||
<div class="menu"> | <div class="menu"> | ||
− | <div class="sub"><a | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT">Home</a></div> |
<div class="dropdown"> | <div class="dropdown"> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT/Team">Team</a></div> |
<div class="dropdown-content"> | <div class="dropdown-content"> | ||
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Team">Team Members</a> |
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Collaborations">Collaborations</a> |
</div> | </div> | ||
</div> | </div> | ||
<div class="dropdown"> | <div class="dropdown"> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT/Description">Project</a></div> |
<div class="dropdown-content"> | <div class="dropdown-content"> | ||
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Design">Design</a> |
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Results">Results</a> |
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/InterLab">InterLab</a> |
+ | <a href="https://2018.igem.org/Team:MIT/Notebook">Notebook</a> | ||
+ | <a href="https://2018.igem.org/Team:MIT/Experiments">Protocols</a> | ||
+ | <a href ="https://2018.igem.org/Team:MIT/Attributions"> Attributions </a> | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="dropdown"> | <div class="dropdown"> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT/Parts">Parts</a></div> |
<div class="dropdown-content"> | <div class="dropdown-content"> | ||
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Basic_Part">Basic Parts</a> |
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Composite_Part">Composite Parts</a> |
</div> | </div> | ||
</div> | </div> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT/Safety">Safety</a></div> |
<div class="dropdown"> | <div class="dropdown"> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a href="https://2018.igem.org/Team:MIT/Human_Practices">Human Practices</a></div> |
<div class="dropdown-content"> | <div class="dropdown-content"> | ||
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Human_Practices">Integrated Human Practices</a> |
− | <a href=" | + | <a href="https://2018.igem.org/Team:MIT/Public_Engagement">Public Engagement</a> |
</div> | </div> | ||
</div> | </div> | ||
− | <div class="sub"><a href=" | + | <div class="sub"><a class="activemenu" href="https://2018.igem.org/Team:MIT/Model">Model</a></div> |
</div> | </div> | ||
− | < | + | <div class="h3">Modeling</div> |
− | < | + | <img src="https://static.igem.org/mediawiki/2018/b/b7/T--MIT--MITmodel.gif" style="width: 50vw; position: relative; left: 25vw; top: 10vw;"></img> |
− | <p style="position: relative; top: | + | <p style="position: relative; top: 11vw; font-family: 'Raleway', sans-serif;; font-size: 1.3vw; color: white; margin-left: 2vw; |
margin-right: 2vw; margin-bottom: 3vw;"> | margin-right: 2vw; margin-bottom: 3vw;"> | ||
We created an advanced multiscale model of the ComCDE quorum sensing system and biofilm formation via WIG synthesis in | We created an advanced multiscale model of the ComCDE quorum sensing system and biofilm formation via WIG synthesis in | ||
Line 406: | Line 659: | ||
</p> | </p> | ||
− | <button class=" | + | <div style="position: absolute; top: 65vw"> |
+ | <button class="accordion1">1. List of Constants and Variables Used in the Model</button> | ||
<div class="panel"> | <div class="panel"> | ||
Line 450: | Line 704: | ||
class="td11"> Decay Rate of CSP mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-4-3" | class="td11"> Decay Rate of CSP mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-4-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/45/T--MIT--MITMorpheqs1x.png" alt="1-- |
400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-4-4" | 400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-4-4" | ||
class="td11"> transcripts per second </td> | class="td11"> transcripts per second </td> | ||
Line 461: | Line 715: | ||
class="td11"> Decay Rate of ComD mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-5-3" | class="td11"> Decay Rate of ComD mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-5-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/c1/T--MIT--MITMorpheqs2x.png" alt="1-- |
400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-5-4" | 400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-5-4" | ||
class="td11"> transcripts per second </td> | class="td11"> transcripts per second </td> | ||
Line 472: | Line 726: | ||
class="td11"> Decay Rate of ComE mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-6-3" | class="td11"> Decay Rate of ComE mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-6-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/19/T--MIT--MITMorpheqs3x.png" alt="1-- |
400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-6-4" | 400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-6-4" | ||
class="td11"> transcripts per second </td> | class="td11"> transcripts per second </td> | ||
Line 483: | Line 737: | ||
class="td11"> Decay Rate of mGTFC mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-7-3" | class="td11"> Decay Rate of mGTFC mRNA </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-7-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/e/eb/T--MIT--MITMorpheqs4x.png" alt="1-- |
400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-7-4" | 400" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-7-4" | ||
class="td11"> transcripts per second </td></tr><tr | class="td11"> transcripts per second </td></tr><tr | ||
Line 525: | Line 779: | ||
class="td11"> Translation Rate of CSP </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-12-3" | class="td11"> Translation Rate of CSP </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-12-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/0/06/T--MIT--MITMorpheqs5x.png" alt="-22- |
15000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-12-4" | 15000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-12-4" | ||
class="td11"> proteins per second </td> | class="td11"> proteins per second </td> | ||
Line 536: | Line 790: | ||
class="td11"> Translation Rate of ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-13-3" | class="td11"> Translation Rate of ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-13-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/0/0d/T--MIT--MITMorpheqs6x.png" alt="-22- |
27000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-13-4" | 27000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-13-4" | ||
class="td11"> proteins per second </td> | class="td11"> proteins per second </td> | ||
Line 547: | Line 801: | ||
class="td11"> Translation Rate of ComE </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-14-3" | class="td11"> Translation Rate of ComE </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-14-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/9c/T--MIT--MITMorpheqs7x.png" alt="-22- |
15000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-14-4" | 15000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-14-4" | ||
class="td11"> proteins per second </td> | class="td11"> proteins per second </td> | ||
Line 558: | Line 812: | ||
class="td11"> Translation Rate of GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-15-3" | class="td11"> Translation Rate of GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-15-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/3/3b/T--MIT--MITMorpheqs8x.png" alt="-22- |
87000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-15-4" | 87000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-15-4" | ||
class="td11"> proteins per second </td> | class="td11"> proteins per second </td> | ||
Line 570: | Line 824: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/e/e1/T--MIT--MITMorpheqs9x.png" alt="ln(1∕2)- |
3600" class="frac" align="middle"><span | 3600" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-16-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-16-4" | ||
Line 583: | Line 837: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/7/7a/T--MIT--MITMorpheqs10x.png" alt=" ln(1∕2) |
360000" class="frac" align="middle"><span | 360000" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-17-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-17-4" | ||
Line 612: | Line 866: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/1d/T--MIT--MITMorpheqs11x.png" alt="ln(1∕2) |
36000-" class="frac" align="middle"><span | 36000-" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-19-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-19-4" | ||
Line 640: | Line 894: | ||
class="td11"> Decay Rate of Phosphorylated ComE </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-21-3" | class="td11"> Decay Rate of Phosphorylated ComE </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-21-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/c3/T--MIT--MITMorpheqs12x.png" alt="--1-- |
360000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-21-4" | 360000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-21-4" | ||
class="td11"> proteins per second </td> | class="td11"> proteins per second </td> | ||
Line 651: | Line 905: | ||
class="td11"> Binding Activity of CSP to ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-22-3" | class="td11"> Binding Activity of CSP to ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-22-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/0/0e/T--MIT--MITMorpheqs13x.png" alt="--2---- |
10000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-22-4" | 10000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-22-4" | ||
class="td11"> complexes per CSP per ComD per second </td> | class="td11"> complexes per CSP per ComD per second </td> | ||
Line 662: | Line 916: | ||
class="td11">Unbinding Activity of CSP:Phosphorylated ComD Complex</td><td style="white-space:nowrap; text-align:center;" id="TBL-2-23-3" | class="td11">Unbinding Activity of CSP:Phosphorylated ComD Complex</td><td style="white-space:nowrap; text-align:center;" id="TBL-2-23-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/9c/T--MIT--MITMorpheqs14x.png" alt="---5--- |
100000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-23-4" | 100000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-23-4" | ||
class="td11"> dissasociations per CSPComDP per second </td> | class="td11"> dissasociations per CSPComDP per second </td> | ||
Line 673: | Line 927: | ||
class="td11"> Kinase Activity of Phosphorylated ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-24-3" | class="td11"> Kinase Activity of Phosphorylated ComD </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-24-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/98/T--MIT--MITMorpheqs15x.png" alt="---5--- |
100000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-24-4" | 100000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-24-4" | ||
class="td11">phosphorylations per CSPComDP per ComE per second</td> | class="td11">phosphorylations per CSPComDP per ComE per second</td> | ||
Line 684: | Line 938: | ||
class="td11"> Enzyme Activity of GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-25-3" | class="td11"> Enzyme Activity of GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-25-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/7/7c/T--MIT--MITMorpheqs16x.png" alt="--1---- |
10000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-25-4" | 10000000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-25-4" | ||
class="td11"> glucans formed per GTFC per Sugar per second </td> | class="td11"> glucans formed per GTFC per Sugar per second </td> | ||
Line 695: | Line 949: | ||
class="td11"> Export Rate of CSP from a Cell </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-26-3" | class="td11"> Export Rate of CSP from a Cell </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-26-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/7/7c/T--MIT--MITMorpheqs17x.png" alt="1-- |
100" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-26-4" | 100" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-26-4" | ||
class="td11"> <sup class="nicefrac"><span | class="td11"> <sup class="nicefrac"><span | ||
Line 711: | Line 965: | ||
class="td11"> Export Rate of Glucans from a Cell </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-27-3" | class="td11"> Export Rate of Glucans from a Cell </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-27-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/3/30/T--MIT--MITMorpheqs18x.png" alt="1 |
2" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-27-4" | 2" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-27-4" | ||
class="td11"> <sup class="nicefrac"><span | class="td11"> <sup class="nicefrac"><span | ||
Line 727: | Line 981: | ||
class="td11"> Binding Activity of ScFv to GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-28-3" | class="td11"> Binding Activity of ScFv to GTFC </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-28-3" | ||
class="td11"> <img | class="td11"> <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/b4/T--MIT--MITMorpheqs19x.png" alt="-4-- |
10000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-28-4" | 10000" class="frac" align="middle"> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-28-4" | ||
class="td11"> Complexes per ScFv per GTFC per second </td> | class="td11"> Complexes per ScFv per GTFC per second </td> | ||
Line 739: | Line 993: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/3/37/T--MIT--MITMorpheqs20x.png" alt="ln(1∕2)- |
1080" class="frac" align="middle"><span | 1080" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-29-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-29-4" | ||
Line 753: | Line 1,007: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/97/T--MIT--MITMorpheqs21x.png" alt="ln(1∕2) |
2160--" class="frac" align="middle"><span | 2160--" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-30-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-30-4" | ||
Line 783: | Line 1,037: | ||
class="td11"> <span | class="td11"> <span | ||
class="cmsy-10">∣</span><img | class="cmsy-10">∣</span><img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/48/T--MIT--MITMorpheqs22x.png" alt=" ln(1∕2) |
360000" class="frac" align="middle"><span | 360000" class="frac" align="middle"><span | ||
class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-32-4" | class="cmsy-10">∣</span> </td><td style="white-space:nowrap; text-align:center;" id="TBL-2-32-4" | ||
Line 793: | Line 1,047: | ||
</div> | </div> | ||
− | <button class=" | + | <button class="accordion1">2. Morpheus and the Cellular Potts Model</button> |
<div class="panel"> | <div class="panel"> | ||
<p class="noindent" > | <p class="noindent" > | ||
Line 803: | Line 1,057: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/e/ea/T--MIT--MITMorpheqs23x.png" alt="P (σ ′ → σ ) = { 1-i(fΔ ΔHH+Y)+ Y > 0 (1) |
x x e---T---otherwise | x x e---T---otherwise | ||
" class="math-display" ></center> | " class="math-display" ></center> | ||
Line 812: | Line 1,066: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/1b/T--MIT--MITMorpheqs24x.png" alt=" ∑ |
H = λV(νσ - Vt)2 | H = λV(νσ - Vt)2 | ||
σ>0 | σ>0 | ||
Line 822: | Line 1,076: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/4d/T--MIT--MITMorpheqs25x.png" alt=" ∑ |
H = [λV (νσ - Vt)2 + λP (ρσ - Pt)2] | H = [λV (νσ - Vt)2 + λP (ρσ - Pt)2] | ||
σ>0 | σ>0 | ||
Line 833: | Line 1,087: | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/b4/T--MIT--MITMorpheqs26x.png" alt=" ∑ |
H = J[τ(σi),τ(σj)](1- δσiσj) | H = J[τ(σi),τ(σj)](1- δσiσj) | ||
i,j | i,j | ||
Line 843: | Line 1,097: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/7/70/T--MIT--MITMorpheqs27x.png" alt="δσiσj = {1,σi = σj;0,σi ⁄= σj} |
" class="math-display" ></center></td><td class="equation-label">(5)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(5)</td></tr></table> | ||
<!--l. 240--><p class="nopar" > | <!--l. 240--><p class="nopar" > | ||
− | <!--l. 242--><p | + | <!--l. 242--><p> </p>Morpheus is based on the Cellular Potts Model, which defines cells as spaces in a two |
or three dimensional lattice (our model used a hexagonal lattice in 2d) and | or three dimensional lattice (our model used a hexagonal lattice in 2d) and | ||
determines changes to cell shape and size by using the Hamiltonian (Equations | determines changes to cell shape and size by using the Hamiltonian (Equations | ||
Line 862: | Line 1,116: | ||
class="ecti-1000">H</span>. Equation 3 incorporates a similar system for cell perimeter into the | class="ecti-1000">H</span>. Equation 3 incorporates a similar system for cell perimeter into the | ||
equation. | equation. | ||
− | <!--l. 254--><p | + | <!--l. 254--><p> </p> In addition to modelling adjustments to cells’ shape and size as they migrate, the |
Cellular Potts Model also uses the Hamiltonian to model the interactions between | Cellular Potts Model also uses the Hamiltonian to model the interactions between | ||
cells. Equation 4 determines the interaction energies between different cell types | cells. Equation 4 determines the interaction energies between different cell types | ||
Line 892: | Line 1,146: | ||
class="ecti-1000">Y </span>< 0) and decreases | class="ecti-1000">Y </span>< 0) and decreases | ||
exponentially with a rate of <img | exponentially with a rate of <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/9d/T--MIT--MITMorpheqs28x.png" alt="1T-" class="frac" align="middle"> where <span |
class="ecti-1000">T </span>represents the amount of unfavorable | class="ecti-1000">T </span>represents the amount of unfavorable | ||
updates to the cell lattice, defined as modifications to the cell’s perimeter or | updates to the cell lattice, defined as modifications to the cell’s perimeter or | ||
Line 903: | Line 1,157: | ||
id="x1-4001r6"></a> | id="x1-4001r6"></a> | ||
<center class="math-display" > | <center class="math-display" > | ||
− | <img | + | <img |
− | + | src="https://static.igem.org/mediawiki/2018/f/f4/T--MIT--MITMorpheqs29x.png" alt="-∂c -∂2c | |
∂T = D ∂X2 | ∂T = D ∂X2 | ||
" class="math-display" ></center></td><td class="equation-label">(6)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(6)</td></tr></table> | ||
Line 913: | Line 1,167: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/b9/T--MIT--MITMorpheqs30x.png" alt=" X- T- |
x = L ,t = τ | x = L ,t = τ | ||
" class="math-display" ></center></td><td class="equation-label">(7)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(7)</td></tr></table> | ||
Line 922: | Line 1,176: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/4d/T--MIT--MITMorpheqs31x.png" alt="∂c τD-∂2c- |
∂t = L2 ∂x2 | ∂t = L2 ∂x2 | ||
" class="math-display" ></center></td><td class="equation-label">(8)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(8)</td></tr></table> | ||
Line 932: | Line 1,186: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/fb/T--MIT--MITMorpheqs32x.png" alt="c(x,t)  ci,j ≡ c(xi,tj),xi ≡ iδx,tj ≡ jδt |
" class="math-display" ></center></td><td class="equation-label">(9)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(9)</td></tr></table> | ||
<!--l. 289--><p class="nopar" > | <!--l. 289--><p class="nopar" > | ||
− | <!--l. 291--><p class="noindent" | + | <!--l. 291--><p class="noindent" > |
− | + | ||
− | + | ||
− | + | ||
<table | <table | ||
class="equation"><tr><td><a | class="equation"><tr><td><a | ||
Line 944: | Line 1,195: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/2/21/T--MIT--MITMorpheqs33x.png" alt="∂c-|xi,tj ci+1,j --ci--1,j= ci+1,j---ci-1,j- |
∂x xi - xi-1 2δx | ∂x xi - xi-1 2δx | ||
" class="math-display" ></center></td><td class="equation-label">(10)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(10)</td></tr></table> | ||
Line 953: | Line 1,204: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/b4/T--MIT--MITMorpheqs34x.png" alt=" ∂c ∂c |
∂2c-|  -∂x |xi+-12 --∂x |xi--12= ci+1,j---2ci,j-+ci-1,j | ∂2c-|  -∂x |xi+-12 --∂x |xi--12= ci+1,j---2ci,j-+ci-1,j | ||
∂x2 xi xi+12 - xi- 12 (δx)2 | ∂x2 xi xi+12 - xi- 12 (δx)2 | ||
Line 964: | Line 1,215: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/f8/T--MIT--MITMorpheqs35x.png" alt="c = c + -δt--(c - 2c + c ) |
i,j+1 i,j (δx)2 i+1,j i,j i-1,j | i,j+1 i,j (δx)2 i+1,j i,j i-1,j | ||
" class="math-display" ></center></td><td class="equation-label">(12)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(12)</td></tr></table> | ||
Line 973: | Line 1,224: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/a/af/T--MIT--MITMorpheqs36x.png" alt="( 2 2 ) |
∂-c+ ∂-c  ci+1,j --2ci,j-+-ci-1,j-+ ck+1,j --2ck,j +-ck-1,j | ∂-c+ ∂-c  ci+1,j --2ci,j-+-ci-1,j-+ ck+1,j --2ck,j +-ck-1,j | ||
∂x2 ∂y2 (δx)2 (δy)2 | ∂x2 ∂y2 (δx)2 (δy)2 | ||
Line 983: | Line 1,234: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/6/63/T--MIT--MITMorpheqs37x.png" alt="ci,k,j+1 = ci,j +-δt2(ci+1,j - 2ci,j +ci-1,j)+ --δt2(ck+1,j - 2ck,j + ck-1,j) |
(δx) (δy) | (δx) (δy) | ||
Line 993: | Line 1,244: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/0/04/T--MIT--MITMorpheqs38x.png" alt=" 4 ∑∞ sin[(n-+-1)θ]sin[(m-+-1)θ]--sin-(nθ)sin[(m---1)θ] |
h2(2s) = 3 [(n+ 12m )2 + 3(12m)2]s | h2(2s) = 3 [(n+ 12m )2 + 3(12m)2]s | ||
m,n=-∞ | m,n=-∞ | ||
" class="math-display" ></center></td><td class="equation-label">(15)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(15)</td></tr></table> | ||
<!--l. 315--><p class="nopar" > | <!--l. 315--><p class="nopar" > | ||
− | <!--l. 317--><p | + | <!--l. 317--><p> </p> Another important component of our model was treating sugar, CSP, and our |
potential outputs not simply as cell-associated values but as scalar fields representing | potential outputs not simply as cell-associated values but as scalar fields representing | ||
the concentration of said molecules. Fortunately Morpheus also incorporates the | the concentration of said molecules. Fortunately Morpheus also incorporates the | ||
Line 1,018: | Line 1,269: | ||
<!--l. 334--><p class="indent" > | <!--l. 334--><p class="indent" > | ||
− | <video src="https:// | + | <video src="https://static.igem.org/mediawiki/2018/7/7c/T--MIT--MITvid1.mp4" controls muted replay autoplay style="width: 30vw; position: relative; left: 32vw;"></video> |
<p> </p>Next, a set of approximations are made in order to solve for the first and second | <p> </p>Next, a set of approximations are made in order to solve for the first and second | ||
derivatives of concentration with respect to x (Equation 9). The central difference | derivatives of concentration with respect to x (Equation 9). The central difference | ||
Line 1,036: | Line 1,287: | ||
derivative on a range half as large as in the previous approximation (Equation | derivative on a range half as large as in the previous approximation (Equation | ||
11). | 11). | ||
− | <!--l. 350--><p | + | <!--l. 350--><p> </p>Using these results, an approximation of the concentration at a point 1 time step |
in the future can be obtained based on the concentrations at the surrounding points | in the future can be obtained based on the concentrations at the surrounding points | ||
at the initial time (Equation 12), which can be appended with terms based on the | at the initial time (Equation 12), which can be appended with terms based on the | ||
Line 1,044: | Line 1,295: | ||
can be combined into Equations 13 and 14 in order to obtain values for a 2-D | can be combined into Equations 13 and 14 in order to obtain values for a 2-D | ||
diffusion model. | diffusion model. | ||
− | <!--l. 360--><p | + | <!--l. 360--><p> </p> In order to sense nearby concentrations or cells in Morpheus, each cell can take |
advantage of the NeighborhoodReporter function, which maps values within a | advantage of the NeighborhoodReporter function, which maps values within a | ||
specified node length from a cell to an average, variance, or sum specific to that cell. | specified node length from a cell to an average, variance, or sum specific to that cell. | ||
Line 1,055: | Line 1,306: | ||
</div> | </div> | ||
− | <button class=" | + | <button class="accordion1">3. Model Specifics</button> |
<div class="panel"> | <div class="panel"> | ||
− | <p | + | <p> </p>The first objective of accurately modelling a bacterial population was to model |
population growth over time. We chose to define our time step in the model as one | population growth over time. We chose to define our time step in the model as one | ||
second, and used the canonical doubling time of around 3800 seconds to | second, and used the canonical doubling time of around 3800 seconds to | ||
Line 1,067: | Line 1,318: | ||
initiation. | initiation. | ||
<!--l. 382--><p class="noindent" > | <!--l. 382--><p class="noindent" > | ||
− | <image src="https:// | + | <image src="https://static.igem.org/mediawiki/2018/4/4f/T--MIT--MITpic1.png" style="width: 60%; position: relative; left: 20vw;"> |
<h4 class="subsectionHead"><span class="titlemark">3.1 </span> <a | <h4 class="subsectionHead"><span class="titlemark">3.1 </span> <a | ||
id="x1-60003.1"></a>Transcription and Translation of the Relevant Genes</h4> | id="x1-60003.1"></a>Transcription and Translation of the Relevant Genes</h4> | ||
Line 1,075: | Line 1,326: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/c1/T--MIT--MITMorpheqs39x.png" alt="dmCSP-- = ktx × pComC + ktf × ComEP × pComC - δmCSP × mCSP |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(16)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(16)</td></tr></table> | ||
Line 1,084: | Line 1,335: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/bd/T--MIT--MITMorpheqs40x.png" alt="dmComD---= ktx × pComD - δmComD × mComD |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(17)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(17)</td></tr></table> | ||
Line 1,093: | Line 1,344: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/46/T--MIT--MITMorpheqs41x.png" alt="dmComE---= ktx × pComE - δmComE × mComE |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(18)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(18)</td></tr></table> | ||
Line 1,102: | Line 1,353: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/c5/T--MIT--MITMorpheqs42x.png" alt="dmGT--FC-= k × ComEP × pGTF C - δ × mGT FC |
dt tf mGTFC | dt tf mGTFC | ||
" class="math-display" ></center></td><td class="equation-label">(19)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(19)</td></tr></table> | ||
Line 1,111: | Line 1,362: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/f3/T--MIT--MITMorpheqs43x.png" alt="dCSPin- = α × mCSP - δ × CSP |
dt CSP CSP in | dt CSP CSP in | ||
" class="math-display" ></center></td><td class="equation-label">(20)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(20)</td></tr></table> | ||
Line 1,120: | Line 1,371: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/b/b6/T--MIT--MITMorpheqs44x.png" alt="dComD--= αComD ×mComD - δComD×ComD+kub ×CSP ComDP - kb×CSPout ×ComD |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(21)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(21)</td></tr></table> | ||
Line 1,129: | Line 1,380: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/1f/T--MIT--MITMorpheqs45x.png" alt="dComE--= αComE ×mComE - δComE ×ComE - kk×CSP ComDP ×ComE+ktf ×pComC ×ComEP +ktf×pGT F C×ComEP |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(22)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(22)</td></tr></table> | ||
Line 1,138: | Line 1,389: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/e/e3/T--MIT--MITMorpheqs46x.png" alt="dGT-FC- = αGTFC × mGT F C - δGTFC × GT FC |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(23)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(23)</td></tr></table> | ||
<!--l. 414--><p class="nopar" > | <!--l. 414--><p class="nopar" > | ||
− | <!--l. 416--><p | + | <!--l. 416--><p> </p>The biggest hurdle in creating an accurate model of biofilm formation in S. mutans |
was simulating the two-component signaling system known as ComCDE. We began | was simulating the two-component signaling system known as ComCDE. We began | ||
by creating differential equations for the transcription and translation of the ComC, | by creating differential equations for the transcription and translation of the ComC, | ||
Line 1,165: | Line 1,416: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/17/T--MIT--MITMorpheqs47x.png" alt="dCSPout |
---dt---= kub×CSP ComDP - kb×CSPout ×ComD+kk ×CSP ComDP ×ComE | ---dt---= kub×CSP ComDP - kb×CSPout ×ComD+kk ×CSP ComDP ×ComE | ||
" class="math-display" ></center></td><td class="equation-label">(24)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(24)</td></tr></table> | ||
Line 1,174: | Line 1,425: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/5/52/T--MIT--MITMorpheqs48x.png" alt="dCSP-ComD-- |
dt = kb×CSPout×ComD - kub×CSP ComDP - kk×CSP ComDP ×ComE - δCSP ComDP ×CSP comDP | dt = kb×CSPout×ComD - kub×CSP ComDP - kk×CSP ComDP ×ComE - δCSP ComDP ×CSP comDP | ||
" class="math-display" ></center></td><td class="equation-label">(25)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(25)</td></tr></table> | ||
Line 1,183: | Line 1,434: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/c5/T--MIT--MITMorpheqs49x.png" alt="dComEP---= kk×CSP ComD ×ComEP - ktf×pComC ×ComEP - ktf×pGT FC ×ComEP - δComEP×ComEP |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(26)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(26)</td></tr></table> | ||
<!--l. 444--><p class="nopar" > | <!--l. 444--><p class="nopar" > | ||
− | <!--l. 446--><p | + | <!--l. 446--><p> </p>We used the Law of Mass Action to create differential equations reflecting the |
kinetics of ComD binding its ligand CSP, the autophosphorylation of ComD, the | kinetics of ComD binding its ligand CSP, the autophosphorylation of ComD, the | ||
phosphorylation of ComE by ComD, and finally the DNA binding and transcription | phosphorylation of ComE by ComD, and finally the DNA binding and transcription | ||
Line 1,223: | Line 1,474: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/ff/T--MIT--MITMorpheqs50x.png" alt="dGlucan |
---dt---= ke × GT F C ×Sugarcell - ϕGlucan × Glucan | ---dt---= ke × GT F C ×Sugarcell - ϕGlucan × Glucan | ||
" class="math-display" ></center></td><td class="equation-label">(27)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(27)</td></tr></table> | ||
<!--l. 479--><p class="nopar" > | <!--l. 479--><p class="nopar" > | ||
− | <!--l. 481--><p | + | <!--l. 481--><p> </p>Biofilm formation in the model depends on two main factors: Sugar available to the |
cell and the amount of Glycosyltransferase enzymes a cell possesses (GTFC). mRNAs | cell and the amount of Glycosyltransferase enzymes a cell possesses (GTFC). mRNAs | ||
for GTFC (Equation 19) are only transcribed when ComEP binds the gene to | for GTFC (Equation 19) are only transcribed when ComEP binds the gene to | ||
Line 1,243: | Line 1,494: | ||
class="cmmi-10">Sugar</span><sub><span | class="cmmi-10">Sugar</span><sub><span | ||
class="cmmi-7">cell</span></sub>. | class="cmmi-7">cell</span></sub>. | ||
− | <!--l. 492--><p | + | <!--l. 492--><p> </p> The final differential equation based on the Law of Mass Action in the most basic |
form of the model, Equation 27, governs the production of water-insoluble | form of the model, Equation 27, governs the production of water-insoluble | ||
glucans from available sugar. The enzymatic activity of GTFC is denoted | glucans from available sugar. The enzymatic activity of GTFC is denoted | ||
Line 1,265: | Line 1,516: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/c/cb/T--MIT--MITMorpheqs51x.png" alt="dCSP |
--dt-- = ϕCSP ×CSPin | --dt-- = ϕCSP ×CSPin | ||
" class="math-display" ></center></td><td class="equation-label">(28)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(28)</td></tr></table> | ||
Line 1,275: | Line 1,526: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/1/1a/T--MIT--MITMorpheqs52x.png" alt="dBiofilm |
---------= ϕGlucan ×Glucan | ---------= ϕGlucan ×Glucan | ||
dt | dt | ||
Line 1,285: | Line 1,536: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/4/4c/T--MIT--MITMorpheqs53x.png" alt="dSugarfield |
----dt----= - ke × GT FC × Sugarcell | ----dt----= - ke × GT FC × Sugarcell | ||
" class="math-display" ></center></td><td class="equation-label">(30)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(30)</td></tr></table> | ||
<!--l. 517--><p class="nopar" > | <!--l. 517--><p class="nopar" > | ||
− | <!--l. 519--><p | + | <!--l. 519--><p> </p>Equations 28-30 are evaluated at each time step at each point in the lattice in order |
to affect the changes individual cells make to field values. Both the biofilm and CSP | to affect the changes individual cells make to field values. Both the biofilm and CSP | ||
field equations increase at an export rate times the number of proteins a cell at a | field equations increase at an export rate times the number of proteins a cell at a | ||
Line 1,302: | Line 1,553: | ||
</div> | </div> | ||
− | <button class=" | + | <button class="accordion1">4. Results</button> |
<div class="panel"> | <div class="panel"> | ||
− | <p | + | <p> </p>Our model proved quite successful in qualitatively reproducing multiple aspects of |
the formation of live <span | the formation of live <span | ||
class="ecti-1000">S. mutans </span>biofilms. The simulated cells form clear microcolonies | class="ecti-1000">S. mutans </span>biofilms. The simulated cells form clear microcolonies | ||
Line 1,315: | Line 1,566: | ||
<h4 class="subsectionHead"><span class="titlemark">4.1 </span> <a | <h4 class="subsectionHead"><span class="titlemark">4.1 </span> <a | ||
id="x1-110004.1"></a>Effect of Sugar Concentration on Biofilm Formation</h4> | id="x1-110004.1"></a>Effect of Sugar Concentration on Biofilm Formation</h4> | ||
− | <img src="https:// | + | <img src="https://static.igem.org/mediawiki/2018/0/07/T--MIT--MITpic2.png"> |
− | <!--l. 539--><p | + | <!--l. 539--><p> </p>The first parameter we varied was sugar by modifying the initial value of the |
diffusion field. After fifteen thousand time steps, there is a clear difference in biofilm | diffusion field. After fifteen thousand time steps, there is a clear difference in biofilm | ||
density in plots of the cells themselves. Graphs of data collected from a | density in plots of the cells themselves. Graphs of data collected from a | ||
Line 1,346: | Line 1,597: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/8/89/T--MIT--MITMorpheqs54x.png" alt="dGT-F-CScF-v = kab × ScFvcell × GT FC - δGTFCScFv × GT FCScF v |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(31)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(31)</td></tr></table> | ||
Line 1,356: | Line 1,607: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/f0/T--MIT--MITMorpheqs55x.png" alt="dScF-vcell= - k ×ScF v × GT FC - δ × ScF v |
dt ab cell ScFvcell cell | dt ab cell ScFvcell cell | ||
" class="math-display" ></center></td><td class="equation-label">(32)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(32)</td></tr></table> | ||
Line 1,368: | Line 1,619: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/9/93/T--MIT--MITMorpheqs56x.png" alt="dScF-vfield-= (- k × ScF v ×GT F C - δ × ScFv ) ÷100 |
dt ab cell ScFvcell cell | dt ab cell ScFvcell cell | ||
" class="math-display" ></center></td><td class="equation-label">(33)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(33)</td></tr></table> | ||
Line 1,381: | Line 1,632: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/5/5a/T--MIT--MITMorpheqs57x.png" alt="dGT FC |
--dt---= αGT FC × mGT F C - δGT FC ×GT F C - kab × ScFvcell × GT FC | --dt---= αGT FC × mGT F C - δGT FC ×GT F C - kab × ScFvcell × GT FC | ||
" class="math-display" ></center></td><td class="equation-label">(34)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(34)</td></tr></table> | ||
<!--l. 583--><p class="nopar" > | <!--l. 583--><p class="nopar" > | ||
− | <img src="https:// | + | <img src="https://static.igem.org/mediawiki/2018/1/1a/T--MIT--MITpic3.png"> |
− | <!--l. 585--><p | + | <!--l. 585--><p> </p>The primary purpose of our model was to preemptively compare the effectiveness of |
our potential outputs by modelling their inhibition of different parts of the pathway | our potential outputs by modelling their inhibition of different parts of the pathway | ||
and its effects on overall biofilm growth. We began by implementing the above | and its effects on overall biofilm growth. We began by implementing the above | ||
Line 1,398: | Line 1,649: | ||
degraded both the ScFv and GTFC bound have been eliminated from the | degraded both the ScFv and GTFC bound have been eliminated from the | ||
simulation. | simulation. | ||
− | <!--l. 598--><p | + | <!--l. 598--><p> </p> The effects of the ScFv on biofilm formation are immediately obvious from plots |
of the cells at the end of the simulation, with only 0.075 arbitrary units of | of the cells at the end of the simulation, with only 0.075 arbitrary units of | ||
concentration to start with being enough to prevent the bacteria from forming | concentration to start with being enough to prevent the bacteria from forming | ||
Line 1,423: | Line 1,674: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/f9/T--MIT--MITMorpheqs58x.png" alt="dKCaseincell |
-----dt-----= - kkc × KCaseincell × Glucan - δKCaseincell × KCaseincell | -----dt-----= - kkc × KCaseincell × Glucan - δKCaseincell × KCaseincell | ||
" class="math-display" ></center></td><td class="equation-label">(35)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(35)</td></tr></table> | ||
Line 1,435: | Line 1,686: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/2/2c/T--MIT--MITMorpheqs59x.png" alt="dKCaseinfield |
-----dt------= (- kkc×KCaseincell×Glucan- δKCaseincell×KCaseincell)÷100 | -----dt------= (- kkc×KCaseincell×Glucan- δKCaseincell×KCaseincell)÷100 | ||
" class="math-display" ></center></td><td class="equation-label">(36)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(36)</td></tr></table> | ||
Line 1,447: | Line 1,698: | ||
<center class="math-display" > | <center class="math-display" > | ||
<img | <img | ||
− | src=" | + | src="https://static.igem.org/mediawiki/2018/f/f7/T--MIT--MITMorpheqs60x.png" alt="dGlucan-= ke×GT F C×Sugarcell- ϕGlucan×Glucan - kkc×KCaseincell×Glucan |
dt | dt | ||
" class="math-display" ></center></td><td class="equation-label">(37)</td></tr></table> | " class="math-display" ></center></td><td class="equation-label">(37)</td></tr></table> | ||
<!--l. 633--><p class="nopar" > | <!--l. 633--><p class="nopar" > | ||
− | <img src="https:// | + | <img src="https://static.igem.org/mediawiki/2018/0/08/T--MIT--MITpic4.png"> |
− | <!--l. 635--><p | + | <!--l. 635--><p> </p>Next, we sought to create a similar set of equations to model the effect of |
Kappa-Casein on biofilm formation. Equation 35 governs the effect of K-Casein on | Kappa-Casein on biofilm formation. Equation 35 governs the effect of K-Casein on | ||
an individual cell. Cells use the NeighborhoodReporter to determine the | an individual cell. Cells use the NeighborhoodReporter to determine the | ||
Line 1,461: | Line 1,712: | ||
Equation 37 is a modification of equation 27 integrating the decrease in | Equation 37 is a modification of equation 27 integrating the decrease in | ||
glucans. | glucans. | ||
− | <!--l. 645--><p | + | <!--l. 645--><p> </p> It became clear from varying the initial K-Casein concentration that the |
equations were successful in modelling the decrease in biofilm formation due to a | equations were successful in modelling the decrease in biofilm formation due to a | ||
decrease in effective adherent glucans surrounding the cells. However, despite the | decrease in effective adherent glucans surrounding the cells. However, despite the | ||
Line 1,474: | Line 1,725: | ||
</div> | </div> | ||
− | <button class=" | + | <button class="accordion1">5. Conclusions</button> |
<div class="panel"> | <div class="panel"> | ||
− | + | <p> </p>The most obvious takeaway from the results of our computational model was that | |
ScFvs were more effective than K-Casein at inhibiting biofilm formation, or, more | ScFvs were more effective than K-Casein at inhibiting biofilm formation, or, more | ||
broadly, inhibiting GTFC is a better method for limiting the virulence of S. mutans | broadly, inhibiting GTFC is a better method for limiting the virulence of S. mutans | ||
Line 1,492: | Line 1,743: | ||
<!--l. 674--><p class="noindent" > | <!--l. 674--><p class="noindent" > | ||
</div> | </div> | ||
− | + | </div> | |
<script> | <script> | ||
− | var acc = document.getElementsByClassName(" | + | var acc = document.getElementsByClassName("accordion1"); |
var i; | var i; | ||
Latest revision as of 03:16, 18 October 2018
We created an advanced multiscale model of the ComCDE quorum sensing system and biofilm formation via WIG synthesis in S. mutans. Employing the capabilities of the modelling environment Morpheus to simulate cell migration and adhesion as well as the the diffusion of extracellular small molecules and proteins, we modelled the logarithmic phase of bacterial growth in two dimensions. Our goal in modelling was to determine the most important factors in the bacterial biofilm initiation system in order to predict the effectiveness of various methods of inhibiting biofilm growth.
Symbol | Meaning | Value | Units |
ktx | Transcription Rate of a Gene | transcripts per gene per second | |
k tf | Transcription Factor Activity of Phosphorylated ComE | 0.15 | transcripts per ComEP per gene per second |
δmCSP | Decay Rate of CSP mRNA | transcripts per second | |
δmComD | Decay Rate of ComD mRNA | transcripts per second | |
δmComE | Decay Rate of ComE mRNA | transcripts per second | |
δmGTFC | Decay Rate of mGTFC mRNA | transcripts per second | |
pComC | Number of ComC genes | 1 | genes |
pComD | Number of ComD genes | 1 | genes |
pComE | Number of ComE genes | 1 | genes |
pGTFC | Number of GTFC genes | 1 | genes |
αCSP | Translation Rate of CSP | proteins per second | |
αComD | Translation Rate of ComD | proteins per second | |
αComE | Translation Rate of ComE | proteins per second | |
αGTFC | Translation Rate of GTFC | proteins per second | |
δCSP | Decay Rate of CSP | ∣∣ | proteins per second |
δComE | Decay Rate of ComE | ∣∣ | proteins per second |
δComD | Decay Rate of ComD | 1.5 × 10-5 | proteins per second |
δGTFC | Decay Rate of GTFC | ∣∣ | proteins per second |
δCSPComDP | Decay Rate of CSPComDP | 1.5 × 10-5 | complexes per second |
δComEP | Decay Rate of Phosphorylated ComE | proteins per second | |
kb | Binding Activity of CSP to ComD | complexes per CSP per ComD per second | |
kub | Unbinding Activity of CSP:Phosphorylated ComD Complex | dissasociations per CSPComDP per second | |
kk | Kinase Activity of Phosphorylated ComD | phosphorylations per CSPComDP per ComE per second | |
ke | Enzyme Activity of GTFC | glucans formed per GTFC per Sugar per second | |
ϕCSP | Export Rate of CSP from a Cell | 1∕CSP × second | |
ϕGlucan | Export Rate of Glucans from a Cell | 1∕Glucan × second | |
kab | Binding Activity of ScFv to GTFC | Complexes per ScFv per GTFC per second | |
δGTFCScFv | Decay Rate of GTFC:ScFv Complex | ∣∣ | complexes per second |
δScFvcell | Decay Rate of ScFv | ∣∣ | proteins per second |
kkc | Binding Activity of Kappa-Casein | 1 | 1∕KCasein × Glucan × second |
δKCaseincell | Decay Rate of Kappa-Casein | ∣∣ | proteins per second |
2.1 Cell Energy and Migration
| (2) |
| (3) |
| (4) |
| (5) |
Morpheus is based on the Cellular Potts Model, which defines cells as spaces in a two or three dimensional lattice (our model used a hexagonal lattice in 2d) and determines changes to cell shape and size by using the Hamiltonian (Equations 2-4). Equation 2 determines changes to the volume of a cell σ with current volume vσ in lattice sites and intended volume V t where λV is a constant parameter of elasticity governing the extent to which the difference between the cell’s immediate and intended volume contributes to a rise in its free energy H. Equation 3 incorporates a similar system for cell perimeter into the equation.
In addition to modelling adjustments to cells’ shape and size as they migrate, the Cellular Potts Model also uses the Hamiltonian to model the interactions between cells. Equation 4 determines the interaction energies between different cell types where τ(σi,σj) represents the cell types of two cells σi and σj and J specifies said energies in matrix form. In order to prevent cells from returning values for interactions with themselves, the term known as the Kronecker Delta defined in Equation 5 is included. Each update to the configuration of cells in the lattice as a result of equations 2-4 only occurs with a certain likelihood governed by the Boltzmann probability in Equation 1. This equation states that the cell’s chance of changing state is 100% if its change in energy ΔH added to its resistance to change Y is favorable (ΔH+Y < 0) and decreases exponentially with a rate of where T represents the amount of unfavorable updates to the cell lattice, defined as modifications to the cell’s perimeter or volume.
2.2 Diffusion and the Cell Lattice Space
| (6) |
| (7) |
| (8) |
| (9) |
| (10) |
| (11) |
| (12) |
| (13) |
| (14) |
| (15) |
Another important component of our model was treating sugar, CSP, and our potential outputs not simply as cell-associated values but as scalar fields representing the concentration of said molecules. Fortunately Morpheus also incorporates the ability to overlay fields like these on simulated cell populations and allows the field to be updated locally based on cell activity at a specific lattice site (cells can also report on fields or other cells surrounding them, a function which is explained in the next section). Diffusion Fields were evaluated using the Central Difference Method to solve the 2-D Diffusion Equation (Equations 6-14). Equation 6 is a differential equation modelling diffusion in one dimension where the concentration c is a function of the X-coordinate and time T. D signifies the diffusion coefficient and L represents the length between nodes in (X, T) space where the domain of solutions is 0≤X≤L. By making the change of variables in Equation 7, the Diffusion Equation can be rewritten in the form of Equation 8.
Next, a set of approximations are made in order to solve for the first and second derivatives of concentration with respect to x (Equation 9). The central difference method is a version of the finite difference method of approximations to solve the Diffusion Equation, which assumes that there is a minimum distance in both dimensions, δx and δt, for which the concentration changes. This creates a grid in (x, t) space as shown in Figure . The central difference method approximates the x-derivative of concentration based on concentration values on either side of a point (i, j), one for each of the smallest change in x from the starting point: (i+1, j) and (i-1, j) (Equation 10). This is more precise than the forwards or backwards difference methods which only take into account one direction of incrementation in x. Next, the second derivative of concentration with respect to x is approximated using the values of the first derivative on a range half as large as in the previous approximation (Equation 11).
Using these results, an approximation of the concentration at a point 1 time step in the future can be obtained based on the concentrations at the surrounding points at the initial time (Equation 12), which can be appended with terms based on the approximations for the first and second derivatives in Equations 10 and 11 in order to obtain a more accurate approximation. Of course, in our model this was done in two dimensions, but the steps for the second dimension y are the same as those above and can be combined into Equations 13 and 14 in order to obtain values for a 2-D diffusion model.
In order to sense nearby concentrations or cells in Morpheus, each cell can take advantage of the NeighborhoodReporter function, which maps values within a specified node length from a cell to an average, variance, or sum specific to that cell. In our model, cells employed the sum function of the NeighborhoodReporter to interact with the various diffusion fields. Equation 15 is the equation for a lattice sum in a 2-dimensional hexagonal lattice, which Morpheus approximates to write field values to individual cells.
The first objective of accurately modelling a bacterial population was to model population growth over time. We chose to define our time step in the model as one second, and used the canonical doubling time of around 3800 seconds to determine a probability of cell division at each time step. Next, in order to reflect the constantly shifting environment of saliva on teeth, we programmed the cells with random motion defined within a realistic range for cell velocity in the salivary microbiome. This ensured that the cells would interact so that they would be affected by the modified adhesion associated with biofilm initiation.
3.1 Transcription and Translation of the Relevant Genes
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23) 3.2 Two-Component Sensing System: Ligand Binding, Response Regulator
Phosphorylation and DNA Binding
(24)
(25)
(26) 3.3 Water-Insoluble Glucan Synthesis via Glucosyltransferase Activity
(27) 3.4 Extracellular Diffusion Fields
(28)
(29)
(30)
Our model proved quite successful in qualitatively reproducing multiple aspects of the formation of live S. mutans biofilms. The simulated cells form clear microcolonies in the locations where glucan concentration is the highest which expand from there. CSP increases everywhere throughout the simulation as the time steps modelled only encompass the phase of growth when that is the case.
4.1 Effect of Sugar Concentration on Biofilm Formation
The first parameter we varied was sugar by modifying the initial value of the diffusion field. After fifteen thousand time steps, there is a clear difference in biofilm density in plots of the cells themselves. Graphs of data collected from a representative cell in each condition show a clear distinction in glucan production between sugar concentrations. For the time period simulated, limiting sugar concentration was between 10 and 25 arbitrary units, at which point the cells were unable to generate enough glucans to adhere and create microcolonies in a biofilm. These results reflect our experiments with live S. mutans in which we varied sucrose concentration and measured its effect on biofilm growth through image analysis of of colony-forming units as well as crystal violet staining. As expected based on our differential equations, the concentration of sugar decreases exponentially over time, whereas the total amount of glucans produced increases exponentially over time. The rates of exponential growth and decay also depend on the sugar available, with the difference in glucans produced by the end of the simulation being around one order of magnitude less than the difference in sugar available in all cases. This data was useful in helping us match the arbitrary units in the model to real experiments.
4.2 Inhibition of GTFC Activity by Single-Chain Variable Fragments
4.2.1 Additional Cellular Equations Governing ScFv Activity
| (31) |
| (32) |
4.2.2 Additional Field Equations Governing ScFv Activity
| (33) |
4.2.3 Modified Equations Integating ScFv Activity
| (34) |
The primary purpose of our model was to preemptively compare the effectiveness of our potential outputs by modelling their inhibition of different parts of the pathway and its effects on overall biofilm growth. We began by implementing the above differential equations (Equations 31-33), and modifying Equation 23 into equation 34. The amount of ScFvs affecting the cell is determined via the NeighborhoodReporter function, and the ScFvs bind GTFC at the rate kab. Once the ScFv binds a GTFC, it forms a GTFC:ScFv complex represented in Equation 31, decreasing both the cell’s GTFC and ScFv count accordingly (Equations 32 and 34). The complex degrades quickly based on a rate from the literature, and once it has degraded both the ScFv and GTFC bound have been eliminated from the simulation.
The effects of the ScFv on biofilm formation are immediately obvious from plots of the cells at the end of the simulation, with only 0.075 arbitrary units of concentration to start with being enough to prevent the bacteria from forming adherent microcolonies throughout the time modelled. The critical point at which the amount of GTFC: ScFv complexes goes from increasing to decreasing determines how soon the cells are able to begin initiating biofilm formation, assuming they are still in the logarithmic growth phase where CSP production is increasing. Since GTFC production is decreased, everything downstream of it is also affected: cells consume less sugar, produce fewer glucans, and create less of a biofilm field in the presence of ScFvs, as shown in the following figures. In equation 33, the decrease of the ScFv field is divided by 100 due to the membrane resolution being set to 100 for the simulation.
4.3 Inhibition of Glucan Activity by Kappa-Casein
4.3.1 Additional Cellular Equations Governing K-Casein Activity
| (35) |
4.3.2 Additional Fiels Equations Governing K-Casein Activity
| (36) |
4.3.3 Modified Equations Integating K-Casein Activity
| (37) |
Next, we sought to create a similar set of equations to model the effect of Kappa-Casein on biofilm formation. Equation 35 governs the effect of K-Casein on an individual cell. Cells use the NeighborhoodReporter to determine the amount of K-Casein molecules affecting it, and those molecules bind glucans at a rate of kkc. Rather than creating a new variable for the complex of K-Casein and a glucan, both are removed from the simulation immediately. Due to being outside the cell, the binding rate of K-Casein was set to 1. Equation 37 is a modification of equation 27 integrating the decrease in glucans.
It became clear from varying the initial K-Casein concentration that the equations were successful in modelling the decrease in biofilm formation due to a decrease in effective adherent glucans surrounding the cells. However, despite the K-Casein being given a dramatically higher binding rate than the ScFvs, a much higher concentration of K-Casein was required to limit the formation of a biofilm during the time simulated. In fact, ten times as high a concentration of K-Casein was required to achieve the same effects as ScFvs. The K-Casein also affected fewer aspects of the overall system of equations because its influence was only effective on one of the most downstream components of the simulation.
The most obvious takeaway from the results of our computational model was that ScFvs were more effective than K-Casein at inhibiting biofilm formation, or, more broadly, inhibiting GTFC is a better method for limiting the virulence of S. mutans than reducing the glucans themselves. This result had a profound effect on our experimental design and our project as a whole. While Kappa-Casein can be readily purchased and implemented in live experiments, the ScFvs we planned to express and implement were not available for purchase anywhere, would be very expensive to get synthesized, and would require additional training and lab techniques to isolate from mammalian cells expressing the protein itself. However, thanks to data from the model, we were able to confirm the superiority of the ScFvs for our purposes. Based on these results, we decided to move further ahead with characterization experiments for GTFC-inhibiting ScFvs.