Kasparas12 (Talk | contribs) |
|||
Line 1: | Line 1: | ||
− | + | {{Vilnius-Lithuania/InnerPage}} | |
− | < | + | <html> |
− | < | + | <h1 class="text-wall-heading">Proof of Concept</h1> |
− | < | + | <div class="text-wall-area-box"> |
− | < | + | <h2 class="text-wall-area-box-heading">The Composite Proof</h2> |
− | <p>We | + | <div class="scroll-area"> |
− | + | <p class="text-content">We proved that our SynDrop system worked as intended by successfully implementing several critical wet lab and dry lab experiments. First, we have created a model to determine microfluidics variables for optimal liposome synthesis. Second, we synthesized stable biocompatible liposomes and demonstrated an internal transcription and translation of functional proteins. Third, we demonstrated that membrane proteins can successfully integrate into our liposomes. Finally, we constructed working fusion proteins that were able to display a designated tag on the outer membrane. | |
− | + | </p> | |
− | + | ||
− | < | + | |
− | |||
− | |||
− | |||
− | |||
</p> | </p> | ||
− | < | + | <button class="read-more-button">Read More</button> |
− | < | + | </div> |
− | < | + | </div> |
− | </ | + | <div class="pagination"> |
− | < | + | <div class="pagination-item-wrapper"> |
+ | <a class="pagination-anchor"> | ||
+ | <div class="pagination-item"></div> | ||
+ | <span class="pagination-text">Description</span> | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="modal"> | ||
+ | <div class="modal-close"></div> | ||
+ | <div class="modal-content"> | ||
+ | <h1>Description</h1> | ||
+ | <p></p> | ||
+ | <p></p> | ||
+ | <h2>What is SynORI?</h2> | ||
+ | <p>SynORI stands for synthetic origin of replication. It is a framework designed to make working with single | ||
+ | and multi-plasmid systems precise, easy and on top of that - more functional.</p> | ||
+ | <p>The SynORI framework enables scientists to build a multi-plasmid system in a standardized manner by:</p> | ||
+ | <ol> | ||
+ | <li>Selecting the number of plasmid groups</li> | ||
+ | <li>Choosing the copy number of each group</li> | ||
+ | <li>Picking the type of copy number control (specific to one group or regulating all of them at once).</li> | ||
− | < | + | </ol> |
− | + | </p> | |
− | <a img src="https://static.igem.org/mediawiki/ | + | <p></p> |
− | < | + | <p>The framework also includes a possibility of adding a selection system that reduces the usage of antibiotics |
+ | (only 1 antibiotic for up to 5 different plasmids!) and an active partitioning system to make sure that low | ||
+ | copy number plasmid groups are not lost during the division. | ||
+ | </p> | ||
+ | <p></p> | ||
+ | <div class="img-cont"> | ||
+ | <img src="https://static.igem.org/mediawiki/parts/8/84/Collect.png" alt="img"> | ||
+ | <div class="img-label"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2>Applications</h2> | ||
+ | <p> | ||
+ | <h5>Everyday lab work</h5> | ||
+ | <p> | ||
+ | A multi-plasmid system that is easy to assemble and control. With our framework the need to limit your | ||
+ | research to a particular plasmid copy number just because there are not enough right replicons to | ||
+ | choose from, is eliminated. With SynORI you can easily create a vector with a desired copy number that | ||
+ | suits your needs.</li> | ||
+ | </p> | ||
+ | <h5>Biological computing</h5> | ||
+ | <p> | ||
+ | The ability to choose a wide range of copy number options and their control types will make the | ||
+ | synthetic biology engineering much more flexible and predictable. Introduction of plasmid copy number | ||
+ | regulation is equivalent to adding a global parameter to a computer system. It enables the coordination | ||
+ | of multiple gene group expression. | ||
+ | </p> | ||
+ | <h5>Smart assembly of large protein complexes</h5> | ||
+ | <p> | ||
+ | The co-expression of multi-subunit complexes using different replicons brings incoherency to an already | ||
+ | chaotic cell system. This can be avoided by using SynORI, as in this framework every plasmid group uses | ||
+ | the same type of control, and in addition can act in a group-specific manner.</p> | ||
− | < | + | <h5>Metabolic engineering</h5> |
+ | <p> | ||
+ | A big challenge for heterologous expression of multiple gene pathways is to accurately adjust the | ||
+ | levels of each enzyme to achieve optimal production efficiency. Precise promoter tuning in | ||
+ | transcriptional control and synthetic ribosome binding sites in translational control are already | ||
+ | widely used to maintain expression levels. In addition to current approaches, our framework allows a | ||
+ | simultaneous multiple gene control. Furthermore, an inducible regulation that we offer, can make the | ||
+ | search for perfect conditions a lot easier. | ||
− | |||
− | |||
− | |||
− | + | </p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <p> | + | </p> |
− | </ | + | <p> |
− | <a img src="https://static.igem.org/mediawiki/2018/ | + | </p> |
− | < | + | <table style="width:100%"> |
+ | <thead> | ||
+ | <td align='center'>Species sign in ODE system</td> | ||
+ | <td align='center'>Species</td> | ||
+ | <td align='center'>Initial concentration (M)</td> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td align='center'>A</td> | ||
+ | <td align='center'>pDNA+RNA I+RNAII early</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>B</td> | ||
+ | <td align='center'>pDNA+RNA II short</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>RNAI</td> | ||
+ | <td align='center'>RNA I</td> | ||
+ | <td align='center'>1E-6</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>D</td> | ||
+ | <td align='center'>pDNA+RNA II long</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>E</td> | ||
+ | <td align='center'>pDNA+RNAII primer</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>F</td> | ||
+ | <td align='center'>RNA II long</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>G</td> | ||
+ | <td align='center'>pDNA</td> | ||
+ | <td align='center'>4E-8*</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>H</td> | ||
+ | <td align='center'>pDNA+RNA II+RNA I late</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>RNA II</td> | ||
+ | <td align='center'>RNA II</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align='center'>J</td> | ||
+ | <td align='center'>RNAI+RNAII</td> | ||
+ | <td align='center'>0</td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="carrot-back"> | ||
+ | <a class="carrot-anchor-back" href=""> | ||
+ | <img class="carrot-next-icon" src="https://static.igem.org/mediawiki/2018/d/d0/T--Vilnius-Lithuania--next-icon.png" /> | ||
+ | </a> | ||
+ | </div> | ||
+ | <div class="carrot-next"> | ||
+ | <a class="carrot-anchor" href=""> | ||
+ | <img class="carrot-next-icon" src="https://static.igem.org/mediawiki/2018/d/d0/T--Vilnius-Lithuania--next-icon.png" /> | ||
+ | </a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="invert-box"> | ||
+ | <a class="invert-image"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/5/5b/T--Vilnius-Lithuania--Invert-Icon.png"/> | ||
+ | </a> | ||
+ | <span class="invert-text">invert</span> | ||
+ | </div> | ||
+ | <script type="text/javascript" src="https://2018.igem.org/wiki/index.php?title=Template:Vilnius-Lithuania/MainJS&action=raw&ctype=text/javascript"></script> | ||
+ | </body> | ||
+ | |||
+ | </html> | ||
− | |||
− | |||
− | + | </html> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + |
Revision as of 03:26, 18 October 2018
Proof of Concept
The Composite Proof
We proved that our SynDrop system worked as intended by successfully implementing several critical wet lab and dry lab experiments. First, we have created a model to determine microfluidics variables for optimal liposome synthesis. Second, we synthesized stable biocompatible liposomes and demonstrated an internal transcription and translation of functional proteins. Third, we demonstrated that membrane proteins can successfully integrate into our liposomes. Finally, we constructed working fusion proteins that were able to display a designated tag on the outer membrane.
</html>