Difference between revisions of "Team:NEU China A/Improve"

 
(12 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
{{Template:NEU_China_A/header}}
 
{{Template:NEU_China_A/header}}
 
<html>
 
<html>
 +
<style>
 +
    .tooltip {
 +
        font-size: 12px;
 +
        color: #000
 +
    }
 +
 +
    .tooltip strong {
 +
        font-weight: 700
 +
    }
 +
 +
    .borderleft a {
 +
        color: #03a9f4;
 +
        text-decoration: underline;
 +
    }
 +
</style>
 +
<style>.blu{background-color:#a36dc0 !important;box-shadow:0px 3px 1px #a36dc0 !important} </style>
 +
 +
<div class="section hold"></div>
 +
 +
<div style="position:absolute;top: 20;width:100%">
 +
    <div class="row "> 
 +
        <h2 style="padding-left:200px; padding-top:calc(100vh - 250px)">Improved Biobrick</h2>
 +
    </div>
 +
</div>
 +
 +
<div class="homeheight">
 +
    <div class="parallax-container homeheight">
 +
        <div class="parallax">
 +
            <img class="responsive-img" src="https://static.igem.org/mediawiki/2018/3/3c/T--NEU_China_A--improve_parts.jpg">
 +
        </div>
 +
 +
    </div>
 +
</div>
  
 
<body>
 
<body>
Line 10: Line 43:
 
             <div class="s10 offset-s2">
 
             <div class="s10 offset-s2">
 
                 <p class="borderleft">
 
                 <p class="borderleft">
                     This year, we chose to use <a href="http://parts.igem.org/Part:BBa_K381001">BBa_K381001 (PyeaR-GFP)
+
                     This year, we chose <a href="http://parts.igem.org/Part:BBa_K381001">BBa_K381001</a> (PyeaR-GFP) as
                     </a>as an alternative to our inflammatory sensor.
+
                     an alternative to our inflammatory sensor, due to promoter PyeaR is sensitive to nitrate and
                    The promoter PyeaR is sensitive to nitrate and nitrite. When nitrate and nitrite enter E. coli,
+
                    nitrite. When nitrate and nitrite enter E. coli, they will be converted to nitric oxide. Then
                    they are converted to nitric oxide. Nitric oxide binds to the repressor protein NsrR, which
+
                    nitric oxide will bind to the repressor protein NsrR that inactivates PyeaR to inhibit
                    inactivates PyeaR to inhibit transcription of downstream genes.
+
                    transcription of downstream genes.
 
                 </p>
 
                 </p>
 
                 <br />
 
                 <br />
 
                 <p class="borderleft">
 
                 <p class="borderleft">
                     We learned that iGEM 2010 Team BCCS-Bristol used BBa_K381001 to detect nitrate and nitrite in the
+
                     We learned that the iGEM 2010 Team BCCS-Bristol had used BBa_K381001 to detect the soil nitrate and
                     soil. The content of nitrate and nitrite in the soil can reflect the fertility of the soil. Farmers
+
                     nitrite to demonstrate the fertility of soil. Thus, farmers can determine which soils are
                    can determine which soils are fertile by detecting the fluorescence of GFP. In this way, farmers
+
                    fertilized by detecting the fluorescence of GFP reporter gene. In this way, farmers only need to
                    only need to apply fertilizer in places where there is no fertility, which can save excess
+
                    apply fertilizer in places where there is no fertility, which can save excess fertilizer. Given the
                    fertilizer. Given the economic costs and the impact of eutrophication on ecosystems, the use of
+
                    economic costs and the impact of eutrophication on ecosystems, the use of BBa_K381001 has great
                    BBa_K381001 has great benefits for both farmers and the environment. However, due to the influence
+
                    benefits for both agriculture and the environment. However, due to the influence of outdoor
                     of outdoor temperature, GFP fluorescence fluctuates greatly. This instability is unfavorable for
+
                     temperature, GFP fluorescence density fluctuated significantly. This instability is unfavorable
                     the detection of soil fertility. In addition, the detection of GFP fluorescence requires special
+
                     for the detection of soil fertility. In addition, the detection of GFP fluorescence signal requires
                     equipment that is not readily available to farmers. Therefore, we replaced GFP with blue
+
                     special equipment that is not readily available for farmers. Therefore, we replaced GFP with blue
                     chromoprotein amilCP for visual detection of soil fertility. On the one hand, amilCP expression is
+
                     chromoprotein (amilCP encoded protein) for visual detection. On the one hand, amilCP expression is
                     less affected by temperature and is a more stable reporter than GFP. On the other hand, amilCP does
+
                     less affected by temperature and is a more stable reporter than GFP. On the other hand, blue
                     not require special equipment to be visible to the naked eye. Therefore, we believe that our
+
                     chromoprotein can be visualized by human eyes, instead of requiring the special equipment.
                    improved part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2817007">BBa_K2817007</a>
+
                    Therefore, we believe that our improved part <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2817007">BBa_K2817007</a>
 
                     is very beneficial to farmers.
 
                     is very beneficial to farmers.
 
                 </p>
 
                 </p>
 
                 <br />
 
                 <br />
 
                 <p class="borderleft">
 
                 <p class="borderleft">
                     According to the results of the<a href="https://2016.igem.org/Team:ShanghaiTechChina_B/Project#NO_Sensor">ShanghaiTechChina_B
+
                     According to the results of the <a href="https://2016.igem.org/Team:ShanghaiTechChina_B/Project#NO_Sensor">ShanghaiTechChina_B
                         2016 team</a>, 100μM SNP aqueous solution can
+
                         2016 team</a>, 100μM Sodium Nitroprusside Dihydrate (SNP) aqueous solution can continually
                     continuously release NO, and the NO concentration is stable at about 5.5μM. Since our project also
+
                     release NO, and the NO concentration is stable at about 5.5μM. Since our project also tested for
                    tested for inflammatory signals, we chose this concentration before testing for <a href="http://parts.igem.org/Part:BBa_K381001">BBa_K381001</a>
+
                    inflammatory signals, we chose this concentration before testing for <a href="http://parts.igem.org/Part:BBa_K381001">BBa_K381001</a>
                     and
+
                     and <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2817007">BBa_K2817007</a>.
                    <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2817007">BBa_K2817007</a>.
+
 
                 </p>
 
                 </p>
 
                 <br />
 
                 <br />
 
                 <p class="borderleft">
 
                 <p class="borderleft">
 
                     The construction of BBa_K381001 can be seen from Figure 1A. We transformed the plasmid containing
 
                     The construction of BBa_K381001 can be seen from Figure 1A. We transformed the plasmid containing
                     BBa_K381001 into DH5α, and cultured at 37 ℃ overnight to dilute to OD = 0.4. Then we took half as
+
                     BBa_K381001 into DH5α competent E. coli strain and cultured at 37 ℃ overnight to dilute to OD600 =
                    control and the other half added SNP aqueous solution and induced at 37 ℃ for 6 h. Then we detected
+
                    0.4. Then we took half of the bacteria as control and the rest was added SNP aqueous solution, and
                    the fluorescence using a microplate reader and a fluorescence microscope (Figure 1B, 1C). We can
+
                    induced at 37 ℃ for 6 h. Then the fluorescence intensity of cells was observed under microplate
                     see that PyeaR can be effectively activated by NO with almost no leakage.
+
                    reader (Figure 1B) and fluorescence inverted microscope (Figure 1C). The histogram of GFP
 +
                     fluorescent density and microscope images indicated that PyeaR could be effectively activated by NO
 +
                    and there was almost no leakage expression.
 
                 </p>
 
                 </p>
 
                 <br />
 
                 <br />
 
                 <div class="center-align">
 
                 <div class="center-align">
                     <img class="responsive-img" title="Figure 3. The construction of BBa_K381001." src="https://static.igem.org/mediawiki/2018/f/fb/T--NEU_China_A--improve-1.png" />
+
                     <img class="responsive-img" title="Figure 1. The test of BBa_K381001." src="https://static.igem.org/mediawiki/2018/f/fb/T--NEU_China_A--improve-1.png" />
 
                 </div>
 
                 </div>
 
                 <p class="tooltip center-align">
 
                 <p class="tooltip center-align">
 
                     <strong>Figure 1. The test of BBa_K381001.</strong>
 
                     <strong>Figure 1. The test of BBa_K381001.</strong>
                     <strong>A</strong>, the construction of BBa_K381001.  
+
                     <strong>A</strong>, the construction of BBa_K381001.
                     <strong>B</strong>, Histogram of GFP fluorescence: LB control, without SNP, with 100μM SNP.  
+
                     <strong>B</strong>, Histogram of GFP fluorescence: LB control, without SNP, with 100μM SNP.
 
                     <strong>C</strong>, GFP fluorescence image from top to bottom: without SNP, with 100μM SNP.
 
                     <strong>C</strong>, GFP fluorescence image from top to bottom: without SNP, with 100μM SNP.
 
                 </p>
 
                 </p>
Line 64: Line 98:
 
             <div class="s10 offset-s2">
 
             <div class="s10 offset-s2">
 
                 <p class="borderleft">
 
                 <p class="borderleft">
                     The construction of BBa_K2817007 can be seen from Figure 2A. We transformed the plasmid containing BBa_K2817007 into DH5α, and cultured at 37 ℃ overnight to dilute to OD = 0.4. Then we took half as control and the other half added SNP aqueous solution and induced at 37 ℃ for 6 h. We also set up negative control group which doesn’t contain amilCP. After 6 h at 37 ℃, 1 mL of the bacterial solution was centrifuged at 8000 rpm for 1 min (Figure 2B). We can see the result of PyeaR being activated by NO by the naked eye.
+
                     The construction of BBa_K2817007 can be seen from Figure 2A. We transformed the plasmid containing
 +
                    BBa_K2817007 into DH5α, and cultured at 37 ℃ overnight to dilute to OD = 0.4. Then we took half as
 +
                    control and the other half added SNP aqueous solution and induced at 37 ℃ for 6 h. We also set up a
 +
                    negative control group which doesn’t contain amilCP. After 6 h at 37 ℃, 1 mL of the bacterial
 +
                    solution was centrifuged at 8,000 r.p.m for 1 min (Figure 2B). We could directly observe the result
 +
                    of PyeaR being activated by NO without special equipment.
 
                 </p>
 
                 </p>
 
                 <div class="center-align">
 
                 <div class="center-align">
                     <img class="responsive-img" title="Figure 5. Production module construction." src="https://static.igem.org/mediawiki/2018/2/2a/T--NEU_China_A--results-5.png" />
+
                     <img class="responsive-img" title="Figure 2. The test of BBa_K2817007." src="https://static.igem.org/mediawiki/2018/3/3e/T--NEU_China_A--improve-2.png" />
 
                 </div>
 
                 </div>
 
                 <p class="tooltip center-align">
 
                 <p class="tooltip center-align">
                     <strong>A</strong>, the construction of our YebF-GFP using strong promoter.
+
                     <strong>Figure 2. The test of BBa_K2817007.</strong>
                     <strong>B</strong>, the construction of IL10 production module.
+
                     <strong>A</strong>, the construction of BBa_K2817007.  
                     <strong>C</strong>, the construction of myrosinase production module.
+
                     <strong>B</strong>, Pellets of bacteria transformed with plasmid containing BBa_K2817007 after induction of 6h. From left to right: negative control group, without SNP group, with 100μM SNP group.
 
                 </p>
 
                 </p>
 
                 <br />
 
                 <br />
 
                 <p class="borderleft">
 
                 <p class="borderleft">
                     When testing the validity of the secretory tag YebF, we transformed the constructed YebF-GFP
+
                     In conclusion, we confirmed our improvement through an experimental comparison between the two parts. In the future, we will further confirm the situation of different concentrations of NO and different temperature conditions.
                    plasmid
+
                    into DH5α and cultured overnight at 37 ℃. The supernatant was centrifuged at 3000 rpm for 5 min,
+
                    and
+
                    the supernatant was taken for fluorescence detection. The results are shown in the Figure 6. But we
+
                    forgot to set up a positive control group. Due to time constraints, we have no time to repeat this
+
                    experiment.
+
                </p>
+
                <br />
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 6. The fluorescence of overnight bacterial suspension."
+
                        src="https://static.igem.org/mediawiki/2018/9/92/T--NEU_China_A--results-6.png" />
+
                </div>
+
                <p class="borderleft">
+
                    We transformed the IL10-flag plasmid into BL21, and incubated at 37 ℃ overnight to dilute to OD =
+
                    0.2.
+
                    After 2 h of growth at 37 ℃, IPTG was added and induced at 30 ℃ for 16 h. Then, the bacterial
+
                    solution
+
                    was lysed and the expression of IL10 was detected by western blot (Figure 7).
+
                </p>
+
                <br />
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 7. Western blot analyses using a flag antibody on bacterial lysate to detect IL10."
+
                        src="https://static.igem.org/mediawiki/2018/a/ac/T--NEU_China_A--results-7.png" />
+
                </div>
+
                <p class="tooltip center-align">
+
                    Lane 1: Negative control (cell lysate without IPTG induction); Lane 2: 0.5mM IPTG, Lane3: 1mM IPTG
+
                    induction for 16h at 30℃.
+
                </p>
+
                <p class="borderleft">
+
                    We transformed the plasmid of myrosinase-his into BL21, and cultured at 37 ℃ overnight and diluted
+
                    to
+
                    OD = 0.2. After growth for 2 h at 37 ℃, different concentrations of IPTG were added and induced at
+
                    16 ℃
+
                    for 16 h. The bacterial cell lysis was then performed to detect the expression of myrosinase by
+
                    SDS-PAGE (Figure 8).
+
                </p>
+
                <br />
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 8. SDS-PAGE analyses on bacterial lysate to detect myrosinase."
+
                        src="https://static.igem.org/mediawiki/2018/a/ae/T--NEU_China_A--results-8.png" />
+
                </div>
+
                <p class="tooltip center-align">
+
                    Lane 1: Negative control (cell lysate without IPTG induction); Lane 2: 0.25mM IPTG; Lane3: 0.5mM
+
                    IPTG,
+
                    Lane4: 0.75mM IPTG induction for 16h at 16℃.
+
                </p>
+
            </div>
+
            <br />
+
 
+
            <div class="s10 offset-s2">
+
                <span class="flow-text light-blue-text">
+
                    3.Kill Switch
+
                </span>
+
            </div>
+
            <br />
+
            <div class="s10 offset-s2">
+
                <p class="borderleft">
+
                    We inserted the reporter gene amilCP into the pColdI plasmid to characterize the performance of the
+
                    cold shock promoter PcspA (Figure 9A). We inserted maz-F into the pColdI plasmid to build our kill
+
                    switch (Figure 9B).
+
                </p>
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 9. Kill switch module construction. " src="https://static.igem.org/mediawiki/2018/d/de/T--NEU_China_A--results-9.png" />
+
                </div>
+
                <p class="tooltip center-align">
+
                    <strong>A</strong>, the construction of PcspA-amilCP plasmid.
+
                    <strong>B</strong>, the construction of PcspA-mazF plasmid.
+
                </p>
+
                <br />
+
                <p class="borderleft">
+
                    We transformed the PcspA-amilCP plasmid into DH5α and cultured overnight at 37℃. The overnight
+
                    culture
+
                    was diluted to OD = 0.2 and allowed to grow for 2 h at 37℃. It was then divided into different
+
                    concentrations of IPTG at 16℃ and 37℃ for 6 h (Figure 10).
+
                </p>
+
                <br />
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 10. Pellets of bacteria transformed with constructed PcspA-amilCP plasmid after induction of 6h."
+
                        src="https://static.igem.org/mediawiki/2018/5/5a/T--NEU_China_A--results-10.png" />
+
                </div>
+
                <p class="tooltip center-align">
+
                    From left to right: 37℃ without IPTG, 37℃ with 0.5mM IPTG, 37℃ with 1mM IPTG, 16℃ without IPTG, 16℃
+
                    with 0.5mM IPTG, 16℃ with 1mM IPTG.
+
                </p>
+
                <p class="borderleft">
+
                    We transformed the constructed PcspA-mazF plasmid into BL21, added 1 mM IPTG to the plate, and
+
                    cultured at 16℃ for 16 h (Figure 11A). We then cultured BL21 transformed with the PcspA-mazF
+
                    plasmid overnight at 16℃. After diluting to OD=0.2 on the next day, the cells were cultured at 16℃,
+
                    and the OD value was measured every hour for 9 hours (Figure 11B).
+
                </p>
+
                <br />
+
                <div class="center-align">
+
                    <img class="responsive-img" title="Figure 11. The effect of our killer gene under 16℃." src="https://static.igem.org/mediawiki/2018/0/05/T--NEU_China_A--results-11.png" />
+
                </div>
+
                <p class="tooltip center-align">
+
                    <strong>A</strong>, the plate of BL21 with and without killer gene under induction. B, the growth
+
                    curve of BL21 with and without killer gene under induction.
+
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 181: Line 123:
  
 
</html>
 
</html>
 +
{{Template:NEU_China_A/footer}}

Latest revision as of 03:27, 18 October 2018

Improved Biobrick

Improvement


This year, we chose BBa_K381001 (PyeaR-GFP) as an alternative to our inflammatory sensor, due to promoter PyeaR is sensitive to nitrate and nitrite. When nitrate and nitrite enter E. coli, they will be converted to nitric oxide. Then nitric oxide will bind to the repressor protein NsrR that inactivates PyeaR to inhibit transcription of downstream genes.


We learned that the iGEM 2010 Team BCCS-Bristol had used BBa_K381001 to detect the soil nitrate and nitrite to demonstrate the fertility of soil. Thus, farmers can determine which soils are fertilized by detecting the fluorescence of GFP reporter gene. In this way, farmers only need to apply fertilizer in places where there is no fertility, which can save excess fertilizer. Given the economic costs and the impact of eutrophication on ecosystems, the use of BBa_K381001 has great benefits for both agriculture and the environment. However, due to the influence of outdoor temperature, GFP fluorescence density fluctuated significantly. This instability is unfavorable for the detection of soil fertility. In addition, the detection of GFP fluorescence signal requires special equipment that is not readily available for farmers. Therefore, we replaced GFP with blue chromoprotein (amilCP encoded protein) for visual detection. On the one hand, amilCP expression is less affected by temperature and is a more stable reporter than GFP. On the other hand, blue chromoprotein can be visualized by human eyes, instead of requiring the special equipment. Therefore, we believe that our improved part BBa_K2817007 is very beneficial to farmers.


According to the results of the ShanghaiTechChina_B 2016 team, 100μM Sodium Nitroprusside Dihydrate (SNP) aqueous solution can continually release NO, and the NO concentration is stable at about 5.5μM. Since our project also tested for inflammatory signals, we chose this concentration before testing for BBa_K381001 and BBa_K2817007.


The construction of BBa_K381001 can be seen from Figure 1A. We transformed the plasmid containing BBa_K381001 into DH5α competent E. coli strain and cultured at 37 ℃ overnight to dilute to OD600 = 0.4. Then we took half of the bacteria as control and the rest was added SNP aqueous solution, and induced at 37 ℃ for 6 h. Then the fluorescence intensity of cells was observed under microplate reader (Figure 1B) and fluorescence inverted microscope (Figure 1C). The histogram of GFP fluorescent density and microscope images indicated that PyeaR could be effectively activated by NO and there was almost no leakage expression.


Figure 1. The test of BBa_K381001. A, the construction of BBa_K381001. B, Histogram of GFP fluorescence: LB control, without SNP, with 100μM SNP. C, GFP fluorescence image from top to bottom: without SNP, with 100μM SNP.


The construction of BBa_K2817007 can be seen from Figure 2A. We transformed the plasmid containing BBa_K2817007 into DH5α, and cultured at 37 ℃ overnight to dilute to OD = 0.4. Then we took half as control and the other half added SNP aqueous solution and induced at 37 ℃ for 6 h. We also set up a negative control group which doesn’t contain amilCP. After 6 h at 37 ℃, 1 mL of the bacterial solution was centrifuged at 8,000 r.p.m for 1 min (Figure 2B). We could directly observe the result of PyeaR being activated by NO without special equipment.

Figure 2. The test of BBa_K2817007. A, the construction of BBa_K2817007. B, Pellets of bacteria transformed with plasmid containing BBa_K2817007 after induction of 6h. From left to right: negative control group, without SNP group, with 100μM SNP group.


In conclusion, we confirmed our improvement through an experimental comparison between the two parts. In the future, we will further confirm the situation of different concentrations of NO and different temperature conditions.