Line 45: | Line 45: | ||
“CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. | “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. | ||
First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments | First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments | ||
− | presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger T- | + | presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential |
relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back! | relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back! | ||
Line 110: | Line 110: | ||
<h2 class="text-center"><font size="+2">Dendritic cell Activation</font></h2> | <h2 class="text-center"><font size="+2">Dendritic cell Activation</font></h2> | ||
<p class="lead text-gray my-4 text-center"> | <p class="lead text-gray my-4 text-center"> | ||
− | <font size="+2">This encapsulin vaccine activates dendritic cells which trigger T-cell attack on the neoantigen bearing cancer cells</font> | + | <font size="+2">This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells</font> |
</p> | </p> | ||
</div> | </div> |
Revision as of 03:51, 18 October 2018
CAPOEIRA
CAncer PersOnalized Encapsulin Immunotherapy and Relapse Assay
Learn more about our projectWhat is CAPOEIRA ?
While Melanoma remains the deadliest form of skin cancer, immunotherapy approaches can harness our immune system to defeat it! Yet, current immuno-treatments suffer from high costs, limited accessibility, and poor specificity. Our project “CAPOEIRA”, named after the Brazilian self-defense martial-art, exploits the potential of synthetic biology to develop a personalized, cost-effective, and rapid production scheme for cancer vaccine and point-of-care relapse surveillance. First, a bioinformatic pipeline integrating state-of-the-art tools identifies our targets: melanoma neoantigens, the fingerprints of cancer cells. Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes. This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen-bearing cancer cells. Nevertheless, we don’t underestimate a defeated villain! To detect potential relapse, we combine techniques including dumbbell probes, rolling circle amplification, isothermal amplification, and CRISPR-Cas12a to detect circulating tumor miRNA and DNA. Ultimately, CAPOEIRA trains the immune system to fight back!
This is CAPOEIRA
Bioinformatics
First, a bioinformatic pipeline integrating state-of-the-art tools identifies our target: melonoma neoantigens, the fingerprints of cancer cells
Vaccine
Next, cell-free protein expression rapidly synthesizes a library of encapsulin protein nanocompartments presenting the various neoantigen epitopes
Dendritic cell Activation
This encapsulin vaccine activates dendritic cells which trigger a T-cell attack on the neoantigen bearing cancer cells
Follow-up
Nevertheless, we don't underestimate a defeated villain! To detect potential relapse we use techniques like CRISPR-Cas12a to detect circulationg tumor miRNA and DNA