Difference between revisions of "Team:HUST-China/Demonstrate"

 
(58 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<html lang="en">
+
 
 +
<!DOCTYPE html>
 +
<html lang="en" dir="ltr" class="client-nojs">
 +
<head>
 +
<meta charset="UTF-8" />
 +
<title>Team:HUST-China/Demonstrate - 2018.igem.org</title>
 +
<meta name="generator" content="MediaWiki 1.24.1" />
 +
<link rel="alternate" type="application/x-wiki" title="Edit" href="/wiki/index.php?title=Team:HUST-China/Demonstrate&amp;action=edit" />
 +
<link rel="edit" title="Edit" href="/wiki/index.php?title=Team:HUST-China/Demonstrate&amp;action=edit" />
 +
<link rel="shortcut icon" href="/favicon.ico" />
 +
<link rel="search" type="application/opensearchdescription+xml" href="/wiki/opensearch_desc.php" title="2018.igem.org (en)" />
 +
<link rel="EditURI" type="application/rsd+xml" href="https://2018.igem.org/wiki/api.php?action=rsd" />
 +
<link rel="alternate" hreflang="x-default" href="/Team:HUST-China/Demonstrate" />
 +
<link rel="copyright" href="http://creativecommons.org/licenses/by/3.0/" />
 +
<link rel="alternate" type="application/atom+xml" title="2018.igem.org Atom feed" href="/wiki/index.php?title=Special:RecentChanges&amp;feed=atom" />
 +
<link rel="stylesheet" href="https://2018.igem.org/wiki/load.php?debug=false&amp;lang=en&amp;modules=mediawiki.legacy.commonPrint%2Cshared%7Cmediawiki.skinning.content.externallinks%7Cmediawiki.skinning.interface%7Cmediawiki.ui.button%7Cskins.igem.styles&amp;only=styles&amp;skin=igem&amp;*" />
 +
<!--[if IE 6]><link rel="stylesheet" href="/wiki/skins/Igem/IE60Fixes.css?303" media="screen" /><![endif]-->
 +
<!--[if IE 7]><link rel="stylesheet" href="/wiki/skins/Igem/IE70Fixes.css?303" media="screen" /><![endif]--><meta name="ResourceLoaderDynamicStyles" content="" />
 +
<style>a:lang(ar),a:lang(kk-arab),a:lang(mzn),a:lang(ps),a:lang(ur){text-decoration:none}
 +
/* cache key: 2018_igem_org:resourceloader:filter:minify-css:7:4954c207eac863ca01279ce65317a567 */</style>
 +
<script src="https://2018.igem.org/wiki/load.php?debug=false&amp;lang=en&amp;modules=startup&amp;only=scripts&amp;skin=igem&amp;*"></script>
 +
<script>if(window.mw){
 +
mw.config.set({"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Team:HUST-China/Demonstrate","wgTitle":"Team:HUST-China/Demonstrate","wgCurRevisionId":480877,"wgRevisionId":480877,"wgArticleId":3611,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":"Luofan527152160","wgUserGroups":["*","user","autoconfirmed"],"wgCategories":[],"wgBreakFrames":false,"wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgMonthNamesShort":["","Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],"wgRelevantPageName":"Team:HUST-China/Demonstrate","wgUserId":466,"wgUserEditCount":98,"wgUserRegistration":1513346253000,"wgUserNewMsgRevisionId":null,"wgIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgWikiEditorEnabledModules":{"toolbar":false,"dialogs":false,"hidesig":true,"preview":false,"previewDialog":false,"publish":false}});
 +
}</script><script>if(window.mw){
 +
mw.loader.implement("user.options",function($,jQuery){mw.user.options.set({"ccmeonemails":0,"cols":80,"date":"default","diffonly":0,"disablemail":0,"editfont":"default","editondblclick":0,"editsectiononrightclick":0,"enotifminoredits":0,"enotifrevealaddr":0,"enotifusertalkpages":1,"enotifwatchlistpages":1,"extendwatchlist":0,"fancysig":0,"forceeditsummary":0,"gender":"unknown","hideminor":0,"hidepatrolled":0,"imagesize":2,"math":1,"minordefault":0,"newpageshidepatrolled":0,"nickname":"","norollbackdiff":0,"numberheadings":0,"previewonfirst":0,"previewontop":1,"rcdays":7,"rclimit":50,"rows":25,"showhiddencats":0,"shownumberswatching":1,"showtoolbar":1,"skin":"igem","stubthreshold":0,"thumbsize":5,"underline":2,"uselivepreview":0,"usenewrc":1,"watchcreations":1,"watchdefault":1,"watchdeletion":0,"watchlistdays":3,"watchlisthideanons":0,"watchlisthidebots":0,"watchlisthideliu":0,"watchlisthideminor":0,"watchlisthideown":0,"watchlisthidepatrolled":0,"watchmoves":0,"watchrollback":0,
 +
"wllimit":250,"useeditwarning":1,"prefershttps":1,"language":"en","variant-gan":"gan","variant-iu":"iu","variant-kk":"kk","variant-ku":"ku","variant-shi":"shi","variant-sr":"sr","variant-tg":"tg","variant-uz":"uz","variant-zh":"zh","searchNs0":true,"searchNs1":false,"searchNs2":false,"searchNs3":false,"searchNs4":false,"searchNs5":false,"searchNs6":false,"searchNs7":false,"searchNs8":false,"searchNs9":false,"searchNs10":false,"searchNs11":false,"searchNs12":false,"searchNs13":false,"searchNs14":false,"searchNs15":false});},{},{});mw.loader.implement("user.tokens",function($,jQuery){mw.user.tokens.set({"editToken":"10a0bfba305d2dc9c88a645834e75ce2+\\","patrolToken":"259801ff0da1642a861578844669ee39+\\","watchToken":"9dedf9f533e0d4e9a7ceb56e3b99c0a8+\\"});},{},{});
 +
/* cache key: 2018_igem_org:resourceloader:filter:minify-js:7:ff15564c76dce8f2652aefd410533c7e */
 +
}</script>
 +
<script>if(window.mw){
 +
mw.loader.load(["mediawiki.page.startup","mediawiki.legacy.wikibits","mediawiki.legacy.ajax"]);
 +
}</script>
 +
</head>
 +
<body class="mediawiki ltr sitedir-ltr ns-0 ns-subject page-Team_HUST-China_Demonstrate skin-igem action-view">
 +
 
 +
        <script type='text/javascript'        src ='/common/tablesorter/jquery.tablesorter.min.js'></script>
 +
        <link rel='stylesheet' type='text/css' href='/common/tablesorter/themes/groupparts/style.css' />
 +
        <link rel='stylesheet' type='text/css' href='/common/table_styles.css' />
 +
 
 +
        <script type='text/javascript'        src ='/wiki/skins/Igem/resources/2018_skin.js'></script>
 +
 
 +
 
 +
    <div id='globalWrapper'>
 +
        <div id='top_menu_under' class='noprint'></div>
 +
        <div id='top_menu_14' class='noprint'>Loading menubar.....</div> <!-- Will be replaced with the jQuery.load -->
 +
<script>jQuery('#top_menu_14').load('https://2018.igem.org/cgi/top_menu_14/menubar_reply.cgi',
 +
    {  t:"Team%3AHUST-China%2FDemonstrate",
 +
a:"View+%2FTeam%3AHUST-China%2FDemonstrate++Edit+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3AHUST-China%2FDemonstrate%26action%3Dedit++History+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3AHUST-China%2FDemonstrate%26action%3Dhistory++Move+%2FSpecial%3AMovePage%2FTeam%3AHUST-China%2FDemonstrate++Unwatch+%2Fwiki%2Findex.php%3Ftitle%3DTeam%3AHUST-China%2FDemonstrate%26action%3Dunwatch%26token%3Db41b99c9e13c982811a097c861a3af52%252B%255C++Page+%2FTeam%3AHUST-China%2FDemonstrate++Discussion+%2Fwiki%2Findex.php%3Ftitle%3DTalk%3ATeam%3AHUST-China%2FDemonstrate%26action%3Dedit%26redlink%3D1++" });
 +
</script>
 +
 
 +
        <!-- Content div contains HQ_page for HQ styles, Logo and title div, and USER CONTENT -->
 +
<div id="content" class="mw-body" role="main">
 +
    <a id="top"></a>
 +
 
 +
            <div id="top_title">
 +
                <div class="logo_2018">
 +
                    <a href="https://2018.igem.org">
 +
                    <img src="https://static.igem.org/mediawiki/2018/8/8b/HQ_page_logo.jpg" width="100px">
 +
                    </a>
 +
                </div>
 +
 
 +
        <h1 id="firstHeading" class="firstHeading">
 +
            <span dir="auto">Team:HUST-China/Demonstrate</span>
 +
        </h1>
 +
            </div>
 +
 
 +
            <div id="HQ_page">
 +
                <div id="bodyContent">
 +
            <div id="mw-content-text" lang="en" dir="ltr" class="mw-content-ltr"><p>
 
<head>
 
<head>
 
<meta charset="utf-8">
 
<meta charset="utf-8">
Line 168: Line 235:
 
                           <ul class="dropdown-menu">
 
                           <ul class="dropdown-menu">
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Modeling overview">Modeling overview</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Modeling overview">Modeling overview</a></li>
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Comparison between PSB">Comparison between PSB</a></li>
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/model_of_systems">Model of systems</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Sort of three genes">Sort of three genes</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Sort of three genes">Sort of three genes</a></li>
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Software">Intelligent device software</a></li>  
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Software">Software</a></li>  
 
                           </ul>
 
                           </ul>
 
                       </li>  
 
                       </li>  
Line 187: Line 254:
 
                           <ul class="dropdown-menu">
 
                           <ul class="dropdown-menu">
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Human Practices">Human Practices</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Human Practices">Human Practices</a></li>
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Education&Engagement">Education&Engagement</a></li>  
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Education_Engagement">Education&amp;Engagement</a></li>  
 
                           </ul>
 
                           </ul>
 
                       </li>  
 
                       </li>  
Line 193: Line 260:
 
                           <a href="#" data-toggle="dropdown" class="dropdown-toggle waves-effect waves-dark">TEAM<b class="caret"></b></a>
 
                           <a href="#" data-toggle="dropdown" class="dropdown-toggle waves-effect waves-dark">TEAM<b class="caret"></b></a>
 
                           <ul class="dropdown-menu">
 
                           <ul class="dropdown-menu">
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Team Members">Team Members</a></li>
+
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Team">Team Members</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Collaborations">Collaborations</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Collaborations">Collaborations</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Attributions">Attributions</a></li>
 
                               <li><a class="waves-effect waves-dark" href="https://2018.igem.org/Team:HUST-China/Attributions">Attributions</a></li>
Line 229: Line 296:
  
  
                   <h3><strong>Part1: <span class="red-content">1.Photosynthetic microorganism system</span></strong></h3>
+
                   <h3><strong>Part1: <span class="red-content">1.Photosynthetic microorganism system</span></strong></h3>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
Line 236: Line 303:
 
             <div class="col-md-12 info-blocks">
 
             <div class="col-md-12 info-blocks">
 
                 <i class="icon-info-blocks material-icons"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 
                 <i class="icon-info-blocks material-icons"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-lanzao01.png"></i>
 +
<i class="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
                               <h3>1.1Construction of genes</h3>
+
                               <h3>1.1 Synechocystis sp. PCC6803</h3>
 
                              
 
                              
 
                        
 
                        
Line 247: Line 315:
 
                           <div class="col-md-12">
 
                           <div class="col-md-12">
 
                              
 
                              
                               <p>Synechocystis sp. PCC6803</p>
+
                               <p>Construction of genes</p>
 
                               <p>Since synechocystis itself lacks a pathway for producing lactate, and as a photoautotrophic microorganism, synechocystis lacks a lactate transporter to transport lactate out of the cell[1]. Therefore, we combined the lactate dehydrogenase gene with the lactate transporter gene in one circuit to achieve lactate production and transportation. For lactate dehydrogenase gene, we chose ldhD, and ldhDc is a codon-optimized version of ldhD, ldhDnARSdR is ldhD with D176A/I177R/F178S/N180R, and ldhDARSdR is the codon-optimized version of ldhDnARSdR. These codon optimizations are aim at increasing the production of lactate. The lldP ​​protein gene is used to transport the lactate out of the cell. We successfully construct genes ldhD-lldp, ldhDC-lldp, ldhDnARSdR-lldp and ldhDARSdR-lldp. </p>
 
                               <p>Since synechocystis itself lacks a pathway for producing lactate, and as a photoautotrophic microorganism, synechocystis lacks a lactate transporter to transport lactate out of the cell[1]. Therefore, we combined the lactate dehydrogenase gene with the lactate transporter gene in one circuit to achieve lactate production and transportation. For lactate dehydrogenase gene, we chose ldhD, and ldhDc is a codon-optimized version of ldhD, ldhDnARSdR is ldhD with D176A/I177R/F178S/N180R, and ldhDARSdR is the codon-optimized version of ldhDnARSdR. These codon optimizations are aim at increasing the production of lactate. The lldP ​​protein gene is used to transport the lactate out of the cell. We successfully construct genes ldhD-lldp, ldhDC-lldp, ldhDnARSdR-lldp and ldhDARSdR-lldp. </p>
 
                                
 
                                
Line 253: Line 321:
 
                           <div  class="col-md-6 col-md-offset-2" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/96/T--HUST-China--2018-demonstrate-_figure_1.png"></div>
 
                           <div  class="col-md-6 col-md-offset-2" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/9/96/T--HUST-China--2018-demonstrate-_figure_1.png"></div>
 
                           <div class="col-md-12 col-md-offset-3 ">
 
                           <div class="col-md-12 col-md-offset-3 ">
                             <p style="font-size: 5px;">Figure 1. PCR of ldhD-lldp expression and ldhDC-lldp expression</p>
+
                             <p style="font-size: 5px;">Figure 1. <i>PCR of ldhD-lldp expression and ldhDC-lldp expression</p></i>
 
                             </div>
 
                             </div>
 
                             <div class="container">
 
                             <div class="container">
Line 260: Line 328:
 
                            
 
                            
 
                             <div class="col-md-12 col-md-offset-3">
 
                             <div class="col-md-12 col-md-offset-3">
                             <p style="font-size: 5px;">Figure 2. PCR of ldhDnARSdR-lldp expression and ldhDARSdR-lldp expression</p>
+
                             <p style="font-size: 5px;">Figure 2. <i>PCR of ldhDnARSdR-lldp expression and ldhDARSdR-lldp expression</p></i>
 
                           </div>
 
                           </div>
 
                        
 
                        
                             <div class="col-md-12 ">
+
                              
                            <p>Rhodopseudomonas palustris</p>
+
                            </div>
+
                            <div class="col-md-12 ">
+
                            <p>We try to use mleS (convert pyruvate to D-lactate), ldhA (convert pyruvate to D-lactate) and lldP (L-lactate permease) to make sure their strains could produce lactate. We construct genes into the shuttle plasmid pMG105 in E.coli BL21, and then detect it .</p>
+
                            </div>
+
                              <div class="container">
+
                                  <div class="row"></div>
+
                                </div>
+
                            <div class="col-md-12 col-md-offset-3 style:font-size:5px;">
+
                            <p>For example of pMG105-PpckaA-RBS -lldP-RBS-ldhA-TT (Figure 1).</p>
+
                            </div>
+
                            <div  class="col-md-3 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/b/b9/T--HUST-China--2018-demonstrate-_figure_b.png"></div>
+
                            <div  class="col-md-3 " > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/a/af/T--HUST-China--2018-demonstrate-_figure_a.PNG"></div>
+
                            <div class="col-md-12 col-md-offset-3">
+
                            <p style="font-size: 5px;" >Figure 1 </p>
+
                            </div>
+
                              <div class="container">
+
                                  <div class="row"></div>
+
                                </div>
+
                            <div class="col-md-12 col-md-offset-2 ">
+
                            <p style="font-size: 5px;" >Figure 3. shows gene circuits are successfully constructed into E.coli BL21.</p>
+
                            </div>
+
                           
+
                                <div class="container">
+
                                  <div class="row"></div>
+
                                </div>
+
 
                          
 
                          
 
                          
 
                          
Line 297: Line 339:
  
 
                           <div class="col-md-12">
 
                           <div class="col-md-12">
                               <h3>1.2. Verification of gene expression</h3>
+
                               <h3>1.2 Synechocystis sp. PCC6803</h3>
 
                                 </div>
 
                                 </div>
  
Line 303: Line 345:
 
                             <div class="col-md-12">
 
                             <div class="col-md-12">
 
                              
 
                              
                               <p>Synechocystis sp. PCC6803</p>
+
                               <p>Verification of gene expression</p>
 
                               <div class="container">
 
                               <div class="container">
 
                                   <div class="row"></div>
 
                                   <div class="row"></div>
 
                                 </div>
 
                                 </div>
 
                               <h3>Detection of yellow fluorescent protein</h3>
 
                               <h3>Detection of yellow fluorescent protein</h3>
                               <p>And all the genes were constructed into the plasmid pck306 and transformed into synechocystis. Since pck306 plasmid contain the gene of yellow fluorescent protein, so we put engineered cynobacteria under the fluorescence microscope to verify the transformation in cynobacteria./p>
+
                               <p>And all the genes were constructed into the plasmid pck306 and transformed into synechocystis. Since pck306 plasmid contain the gene of yellow fluorescent protein, so we put engineered cynobacteria under the fluorescence microscope to verify the transformation in cynobacteria.
 
                         </div>
 
                         </div>
 
  <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/3/33/T--HUST-China--2018-demonstrate-_figure_3.png"></div>
 
  <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/3/33/T--HUST-China--2018-demonstrate-_figure_3.png"></div>
<div class="col-md-12 col-md-offset-2">
 
                            <p style="font-size: 5px;" >Figure 4.  Results of yellow fluorescent protein of pck306 plasmid in Synechocystis sp. PCC6803. L-Rhamose(1g/L) was added and after 36 hours, engineered bacteria showed it expressed successfully.</p>
 
                            </div>
 
 
                                  
 
                                  
 
                              
 
                              
 
                            
 
                            
 
                           <div class="col-md-12">
 
                           <div class="col-md-12">
                           
+
                            <p style="font-size: 5px;" >Figure 3. Results of yellow fluorescent protein of pck306 plasmid in Synechocystis sp. PCC6803. L-Rhamose(1g/L) was added and after 36 hours, engineered bacteria showed it expressed successfully.</p>
 +
<br/>
 
                               <p>We could draw the conclusion that these genes were successfully constructed into engineered Synechocystis sp. PCC6803.</p>
 
                               <p>We could draw the conclusion that these genes were successfully constructed into engineered Synechocystis sp. PCC6803.</p>
 
                         </div>
 
                         </div>
Line 337: Line 377:
 
                         </div>
 
                         </div>
 
                         <div  class="col-md-6 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/3/37/T--HUST-China--2018-demonstrate-_figure_5.png"></div>
 
                         <div  class="col-md-6 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/3/37/T--HUST-China--2018-demonstrate-_figure_5.png"></div>
                        <div class="col-md-12 col-md-offset-2">
 
                            <p style="font-size: 5px;" >Figure 5. There were nearly 0.2g bacteria used to testify the expression of lldP. After affinity chromatography, the protein was electrophoresed through SDS-PAGE. As the red box shows, lldP can be seen . Comparing to wild type, lldP is expressed in Synechocystis sp. PCC 6803.</p>
 
                            </div>
 
 
                             <div class="container">
 
                             <div class="container">
 
                                   <div class="row"></div>
 
                                   <div class="row"></div>
Line 345: Line 382:
 
                             <div class="col-md-12">
 
                             <div class="col-md-12">
 
                              
 
                              
 +
                            <p style="font-size: 5px;" >Figure 4a. <i>There were nearly 0.2g bacteria used to testify the expression of lldP.</i> After affinity chromatography, the protein was electrophoresed through SDS-PAGE. As the red box shows, lldP can be seen . Comparing to wild type, lldP is expressed in Synechocystis sp. PCC 6803.</p>
 +
<br/>
 
                               <p>Because of the slow growth of Synechocystis sp. PCC 6803 and time limitation, we did not have too much bacteria, so we only use nearly 0.2g of them to show whether lldP expressed. The color is pale but still can be seen. lldP expression succeeds.</p>
 
                               <p>Because of the slow growth of Synechocystis sp. PCC 6803 and time limitation, we did not have too much bacteria, so we only use nearly 0.2g of them to show whether lldP expressed. The color is pale but still can be seen. lldP expression succeeds.</p>
                               <p>Rhodopseudomonas palustris</p>
+
                     
                        </div>
+
                            <h3>Real-Time Quantitative PCR</h3>
 +
  </div>
 +
 
 +
                               
 +
                            <div class="col-md-12">
 +
                           
 +
                               <p>To illustrate our project does work. We must prove that our circuit express successfully. Therefore, we did real-time quantitative PCR to demostrate the transcription of the circuit ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP and ldhDARSdR-lldP. The result shows as the figure below:</p>
 +
                          </div>
 +
 
 +
                          <div class="col-md-8 col-md-offset-1" style="text-align: center;">
 +
<img class="img-responsive" height="400" width="300"  src="https://static.igem.org/mediawiki/2018/2/20/T--HUST-China--2018-result_xiaoziyang_hong.png">
 +
<img class="img-responsive"  height="400" width="300" src="https://static.igem.org/mediawiki/2018/a/ab/T--HUST-China--2018-result_xiaoziyang_zi.png">
 +
<img class="img-responsive"  height="400" width="300" src="https://static.igem.org/mediawiki/2018/9/96/T--HUST-China--2018-result_xiaoziyang_lan.png">
 +
<img class="img-responsive"  height="400" width="300" src="https://static.igem.org/mediawiki/2018/8/8d/T--HUST-China--2018-result_xiaoziyang_ju.png">
 +
                                    <div class="col-md-offset-1">
 +
                                    <p style="font-size: 5px;">Figure 4b. The figure shows that ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP, ldhDARSdR-lldP express successfully.</p>
 +
                          </div>
 +
                          </div>     
 +
                       
 +
                        <br/>
 +
                        <div class="col-md-12">
 +
                            <h3><b>Lactate Detection</b></h3>
 +
                <p>Finally, to testify how the whole circuit in Synechocystis sp. PCC 6803(synechocystis) works, we did lactate detection experiment. After adding L-Rhamose(1g/L) for 72h, we use Lactic Acid assay kit, provided by Nanjing Jiancheng Bioengineering, to quantify lactate concentration. </p>
 +
        </div>
 +
      </div>
 +
        <div class="col-md-12">
 +
 
 +
                                </div>
 +
                                <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/d6/T--HUST-China--2018-lactate_%281%29.png"></div>
 +
                                <div class="col-md-12 col-md-offset-1">
 +
                            </div>
 +
                            <div class="col-md-12">
 +
                            <p style="font-size: 5px;" >Figure 5. <i> Lactate production of engineered Synechocystis sp. PCC6803. </i>Comparison of WT, ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP, ldhDARSdR-lldP. Synechocystis grew for 7 days, then L-Rhamose(1g/L) was added. After induced 72 hours, lactate concentration has shown above.</p>
 +
<br/>
 +
                              <p>The figure indicates that after transforming our circuit in bacteria, the production and releasing of lactate increase evidently, and ldhDARSdR-lldP is the most efficient one. In summary, our engineered bacteria, Synechocystis sp. PCC 6803(synechocystis), do achieve our goal to provide lactate to Shewanella. </p>
 +
                                <div class="container"> 
 +
        <div class="row">
 +
        </div>
 +
      </div>
 +
                              <h3>1.3 Rhodopseudomonas palustris</h3>
 +
                            </div>
 +
                            <div class="col-md-12 ">
 +
                            <p>We try to use mleS (convert pyruvate to D-lactate), ldhA (convert pyruvate to D-lactate) and lldP (L-lactate permease) to make sure their strains could produce lactate. We construct genes into the shuttle plasmid pMG105 in E.coli BL21, and then detect it .</p>
 +
<br/>
 +
                            </div>
 +
                              <div class="container">
 +
                                  <div class="row"></div>
 +
                                </div>
 +
                            <div class="col-md-12 col-md-offset-3 style:font-size:5px;">
 +
                            <p>For example of pMG105-PpckaA-RBS -lldP-RBS-ldhA-TT (Figure 3).</p>
 +
                            </div>
 +
                            <div  class="col-md-3 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/b/b9/T--HUST-China--2018-demonstrate-_figure_b.png"></div>
 +
                            <div  class="col-md-3 " > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/a/af/T--HUST-China--2018-demonstrate-_figure_a.PNG"></div>
 +
                            <div class="col-md-12 col-md-offset-3">
 +
                            <p style="font-size: 5px;" > </p>
 +
                            </div>
 +
                              <div class="container">
 +
                                  <div class="row"></div>
 +
                                </div>
 +
                           
 +
                                <div class="container">
 +
                            <p style="font-size: 5px;" >Figure 6. shows gene circuits are successfully constructed into E.coli BL21.</p>
 +
                                  <div class="row"></div>
 +
                                </div>
 +
                       
 +
                       
 
                           <div class="container">
 
                           <div class="container">
 
                                   <div class="row"></div>
 
                                   <div class="row"></div>
Line 370: Line 474:
 
                                     <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/2/20/T--HUST-China--2018-result-pic1.png" style="width: 590px;height:490px">
 
                                     <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/2/20/T--HUST-China--2018-result-pic1.png" style="width: 590px;height:490px">
 
                               </div>
 
                               </div>
   <div class="col-md-12 col-md-offset-2">
+
   <div class="col-md-12 col-md-offset0">
     <p style="font-size: 5px;" >Figure 6. (A). The expression level of mleS. (B). The epression level of lldP. (C). The expression of ldhA.</p></div>
+
      
    <div class="col-md-12">
+
      <p>It shows the verification of gene expression is correct. Gene mleS, lldP and ldhA have a good expression on mRNA level. </p>
+
    </div>
+
 
     <div class="container">   
 
     <div class="container">   
 
         <div class="row">
 
         <div class="row">
        </div>
+
        <p style="font-size: 5px;" >Figure 7.Relative expression level of targeted genes in E.coli BL21. We choose mleS(malate dehydrogenase, the conversion of malic acid to L-lactate), lldP(L-lactate permease, the lactate is transported out of the cell) and ldhA(fermentative D-lactate dehydrogenase, NAD-dependent, convert pyruvate to D-lactate) as the reference genes and pMG105 as the standard quantity. (A). The expression level of mleS. (B). The expression level of lldP. (C). The expression level of ldhA. We could find that mleS, lldP and ldhA have a higher expression compared with pMG105. It means every genes can express efficiently.</p></div></i>
      </div>
+
 
        <div class="col-md-12">
+
      <p>It shows the verification of gene expression is correct. Gene mleS, lldP and ldhA have a good expression on mRNA level. </p>
                              <p>Synechocystis sp. PCC6803 </p>
+
                         
                              <p>Finally, to testify how the whole circuit in Synechocystis sp. PCC 6803(synechocystis) works, we did lactate detection experiment. After adding L-Rhamose(1g/L) for 72h, we use Lactic Acid assay kit, provided by Nanjing Jiancheng Bioengineering, to quantify lactate concentration. </p>
+
                             
                                </div>
+
                                <h3>Lactate Detection</h3>
                                <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/03/T--HUST-China--2018-demonstrate-_figure_4.png"></div>
+
                                 <p>We detect lactate production of gene circuit in E.coli BL21 (Figure8)</p>
                                <div class="col-md-12 col-md-offset-1">
+
                            <p style="font-size: 5px;" >Figure 7. Lactate production of engineered Synechocystis sp. PCC6803. Comparison of WT, ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP, ldhDARSdR-lldP. Synechocystis grew for 7 days, then L-Rhamose(1g/L) was added. After induced 72 hours, lactate concentration has shown above.</p>
+
                            </div>
+
                            <div class="col-md-12">
+
                              <p>The figure indicates that after transforming our circuit in bacteria, the production and releasing of lactate increase evidently, and ldhDARSdR-lldP is the most efficient one. In summary, our engineered bacteria, Synechocystis sp. PCC 6803(synechocystis), do achieve our goal to provide lactate to Shewanella. </p>
+
                                <div class="container"> 
+
        <div class="row">
+
        </div>
+
      </div>
+
                              <p>Rhodopseudomonas palustris </p>
+
                                 <p>We detect lactate production of gene circuit in E.coli BL21 (Figure3)</p>
+
 
                                 </div>
 
                                 </div>
                                 <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/03/T--HUST-China--2018-demonstrate-_figure_4.png"></div>
+
                                 <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/a/af/T--HUST-China--2018-result-rusuan04.png"></div>
 
                                 <div class="col-md-12 col-md-offset-4">
 
                                 <div class="col-md-12 col-md-offset-4">
                            <p style="font-size: 5px;" >Figure 8. Lactate production of different gene circuits.</p>
 
 
                             </div>
 
                             </div>
 
                              
 
                              
Line 406: Line 495:
 
       </div>  
 
       </div>  
  
 +
                            <p style="font-size: 5px;" >Figure 8.LB is a kind of medium to cultivate bacterial. We detect lactate content of LB and others. PMG105 has the lowest lactate content because pMG105 doesn’t have any gene to help produce lactate. It proves that all of our gene circuits have ability to produce lactate. Besides, compared with ldhA and lldP, ldhA-lldP has a better production efficiency;  compared with ldhA-lldP, lldP-ldhA has a better production efficiency; compared with ldhA-lldP, mleS-lldP has a better production efficiency; compared with other gene circuits, mleS-lldP-ldhA has a better production efficiency. The result proves our modeling is correct.</p></i>
  
 
                                  
 
                                  
Line 424: Line 514:
 
           <div class="row">
 
           <div class="row">
 
             <div class="col-md-12 info-blocks">
 
             <div class="col-md-12 info-blocks">
                 <i class="icon-info-blocks material-icons"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/63/T--HUST-China--2018-zhaozehong01.png"></i>
+
                 <i class="icon-info-blocks material-icons"><img class="img-responsive" src="https://static.igem.org/mediawiki/2018/0/0c/T--HUST-China--2018-xiwa01.png"></i>
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                       <div class="info-blocks-in" style="background-color: #ffffff; border: 1px solid #eeeeee;border-radius:5px;">
 
                         <h3>2.1 Plasmid Construction and Conjugation </h3>
 
                         <h3>2.1 Plasmid Construction and Conjugation </h3>
Line 437: Line 527:
 
                                   </div>
 
                                   </div>
 
                                     <div class="col-md-12">
 
                                     <div class="col-md-12">
                                     <p style="font-size: 5px;">Figure 9. Verification of successful conjugation. (A). pYYDT-dld and pYYDT-lldEFG. (B). pYYDT-gapA-mdh. (C). pYYDT-pflB-fdh.</p>
+
                                     <p style="font-size: 5px;">Figure 9.Verification of successful conjugation. (A). pYYDT-dld and pYYDT-lldEFG. (B). pYYDT-gapA-mdh. (C). pYYDT-pflB-fdh.</p>
 
                                   </div>
 
                                   </div>
  
Line 451: Line 541:
 
                                      
 
                                      
 
                             </div>
 
                             </div>
                             <div  class="col-md-3 col-md-offset-1" > <img class="https://static.igem.org/mediawiki/2018/0/03/T--HUST-China--2018-demonstrate-_figure_50.png"></div>
+
                             <div  class="col-md-3 " > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/7/7a/T--HUST-China--2018-Demonstrate-qpcr1.png"></div>
   <div  class="col-md-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/7/75/T--HUST-China--2018-demonstrate-_figure_51.png"></div>
+
   <div  class="col-md-3 " > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8e/T--HUST-China--2018-Demonstrate-qpcr2.png"></div>
   <div  class="col-md-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/6/6c/T--HUST-China--2018-demonstrate-_figure_53.png"></div>
+
   <div  class="col-md-3 " > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/a/ad/T--HUST-China--2018-Demonstrate-qpcr3.png"></div>
<div class="col-md-12 col-md-offset-2">
+
    <p style="font-size: 5px;" >Figure 10. Relative expression level of targeted genes in engineered Shewanella Oneidensis MR-1. We chose gyrB(encodes DNA gyrase B) as the reference gene and 1 as the standard quantity. (A). The expression level of pYYDT-dld. (B). The expression level of pYYDT-gapA-mdh. (C). The expression level of pYYDT-pflB-fdh.</p></div>
+
 
     <div class="col-md-12">
 
     <div class="col-md-12">
       <p>As shown by figure 2, it is demonstrated that these genes could be expressed in engineered Shewanella Oneidensis MR-1.</p>
+
    <p style="font-size: 5px;" >Figure 10. Relative expression level of targeted genes in engineered Shewanella Oneidensis MR-1.We chose gyrB(encodes DNA gyrase B) as the reference gene and 1 as the standard quantity. (A). The expression level of pYYDT-dld. (B). The expression level of pYYDT-gapA-mdh. (C). The expression level of pYYDT-pflB-fdh.</p>
    </div>
+
       <p>As shown by figure 10, it is demonstrated that these genes could be expressed in engineered Shewanella Oneidensis MR-1.</p>
    <div class="col-md-12">
+
 
       <p>(2).Electrogenesis</p>
 
       <p>(2).Electrogenesis</p>
 
       <p>Improvement about the efficiency of electricity production is our final goal. We compared the Shewanella contained targeted genes with the Shewanella with no-load vector pYYDT.
 
       <p>Improvement about the efficiency of electricity production is our final goal. We compared the Shewanella contained targeted genes with the Shewanella with no-load vector pYYDT.
Line 489: Line 576:
 
</P></div>
 
</P></div>
 
   <div class="container">   
 
   <div class="container">   
   <div  class="  col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/d0/T--HUST-China--2018-demonstrate-_figure_44.png"></div>
+
   <div  class="  col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8f/T--HUST-China--2018-demonstrate-_figure_45.png"></div>
 
</div>
 
</div>
 
   <div class="col-md-12 col-md-offset-2">
 
   <div class="col-md-12 col-md-offset-2">
Line 495: Line 582:
 
</div>
 
</div>
 
   <div class="container">
 
   <div class="container">
   <P>Figure 2. The comparison of electricity production between wild type and engineered Synechocystis PCC6803.
+
    
</P>
+
 
</div>
 
</div>
   <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/8/8f/T--HUST-China--2018-demonstrate-_figure_45.png"></div>
+
   <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/d/d0/T--HUST-China--2018-demonstrate-_figure_44.png"></div>
 
   <div class="col-md-12 col-md-offset-2">
 
   <div class="col-md-12 col-md-offset-2">
     <p style="font-size: 5px;" >Figure 12. The comparison of electricity production between wild type and engineered Synechocystis PCC6803.</p></div>
+
     <p style="font-size: 5px;" >Figure 12.The comparison of electricity production between wild type Rhodopseudomonas palustris and type Synechocystis PCC6803.</p></div>
 
</div>
 
</div>
 +
                <div class="container">
 +
 
 +
</div>
 +
  <div  class="col-md-5 col-md-offset-3" > <img class="img-responsive" src="https://static.igem.org/mediawiki/2018/1/1e/T--HUST-China--2018-Demonstrate-ele.png"></div>
 +
  <div class="col-md-12 col-md-offset-2">
 +
    <p style="font-size: 5px;" >Figure 13.The comparison between Shewanella with no-load vector and Shewanella with targeted genes.</p></div>
 +
</div>
 +
<br/>
 +
                <div class="container">
 +
                  <P>We could learn from this figure that constructed bacteria could produce more electricity, which means that the targeted genes have been expressed successfully in the cell and helped to produce more electricity.
 +
</P></div>
  
 
                 </div>
 
                 </div>
Line 524: Line 621:
 
           <div class="copyright col-md-12" style="text-align: center;color: gray; font-size: 14px;">
 
           <div class="copyright col-md-12" style="text-align: center;color: gray; font-size: 14px;">
 
               <span>
 
               <span>
                 College of Life Science & Technology<br>
+
                 College of Life Science &amp; Technology<br>
 
                 Huazhong University of Science and Technology<br>
 
                 Huazhong University of Science and Technology<br>
 
                 Add: 1037 Luoyu Road, Wuhan, Hubei, China; P.C: 430074<br>
 
                 Add: 1037 Luoyu Road, Wuhan, Hubei, China; P.C: 430074<br>
                 Copyright &copy;2018 Huazhong University of Science & Technology. Produced By </span><a href="https://2018.igem.org/Team:HUST-China" target="_blank" style="color:white;">HUST-China</a>
+
                 Copyright &#169;2018 Huazhong University of Science &amp; Technology. Produced By </span><a href="https://2018.igem.org/Team:HUST-China" target="_blank" style="color:white;">HUST-China</a>
 
           </div>   
 
           </div>   
 
       </div>
 
       </div>
Line 558: Line 655:
 
</script>
 
</script>
 
</body>
 
</body>
 +
 +
</p>
 +
<!--
 +
NewPP limit report
 +
CPU time usage: 0.003 seconds
 +
Real time usage: 0.004 seconds
 +
Preprocessor visited node count: 4/1000000
 +
Preprocessor generated node count: 24/1000000
 +
Post‐expand include size: 0/2097152 bytes
 +
Template argument size: 0/2097152 bytes
 +
Highest expansion depth: 2/40
 +
Expensive parser function count: 0/100
 +
-->
 +
 +
<!-- Saved in parser cache with key 2018_igem_org:pcache:idhash:3611-0!*!*!*!*!*!* and timestamp 20181018021838 and revision id 480877
 +
-->
 +
</div>             <div class="visualClear"></div>
 +
            </div>
 +
    </div>
 +
 +
        </div>
 +
    </div>
 
</html>
 
</html>

Latest revision as of 03:57, 18 October 2018

<!DOCTYPE html> Team:HUST-China/Demonstrate - 2018.igem.org

Loading menubar.....

Team:HUST-China/Demonstrate

HillSide Multi purpose HTML5 Template

Demonstrate

1.1 Synechocystis sp. PCC6803

Construction of genes

Since synechocystis itself lacks a pathway for producing lactate, and as a photoautotrophic microorganism, synechocystis lacks a lactate transporter to transport lactate out of the cell[1]. Therefore, we combined the lactate dehydrogenase gene with the lactate transporter gene in one circuit to achieve lactate production and transportation. For lactate dehydrogenase gene, we chose ldhD, and ldhDc is a codon-optimized version of ldhD, ldhDnARSdR is ldhD with D176A/I177R/F178S/N180R, and ldhDARSdR is the codon-optimized version of ldhDnARSdR. These codon optimizations are aim at increasing the production of lactate. The lldP ​​protein gene is used to transport the lactate out of the cell. We successfully construct genes ldhD-lldp, ldhDC-lldp, ldhDnARSdR-lldp and ldhDARSdR-lldp.

Figure 1. PCR of ldhD-lldp expression and ldhDC-lldp expression

Figure 2. PCR of ldhDnARSdR-lldp expression and ldhDARSdR-lldp expression

1.2 Synechocystis sp. PCC6803

Verification of gene expression

Detection of yellow fluorescent protein

And all the genes were constructed into the plasmid pck306 and transformed into synechocystis. Since pck306 plasmid contain the gene of yellow fluorescent protein, so we put engineered cynobacteria under the fluorescence microscope to verify the transformation in cynobacteria.

Figure 3. Results of yellow fluorescent protein of pck306 plasmid in Synechocystis sp. PCC6803. L-Rhamose(1g/L) was added and after 36 hours, engineered bacteria showed it expressed successfully.


We could draw the conclusion that these genes were successfully constructed into engineered Synechocystis sp. PCC6803.

Affinity Chromatography

In addition to knowing transcription of the gene, we want to exhibit the expression of the protein, we insert 6Xhis-tag into lldP and did affinity chromatography to show we finally made it. The result is shown below:

Figure 4a. There were nearly 0.2g bacteria used to testify the expression of lldP. After affinity chromatography, the protein was electrophoresed through SDS-PAGE. As the red box shows, lldP can be seen . Comparing to wild type, lldP is expressed in Synechocystis sp. PCC 6803.


Because of the slow growth of Synechocystis sp. PCC 6803 and time limitation, we did not have too much bacteria, so we only use nearly 0.2g of them to show whether lldP expressed. The color is pale but still can be seen. lldP expression succeeds.

Real-Time Quantitative PCR

To illustrate our project does work. We must prove that our circuit express successfully. Therefore, we did real-time quantitative PCR to demostrate the transcription of the circuit ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP and ldhDARSdR-lldP. The result shows as the figure below:

Figure 4b. The figure shows that ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP, ldhDARSdR-lldP express successfully.


Lactate Detection

Finally, to testify how the whole circuit in Synechocystis sp. PCC 6803(synechocystis) works, we did lactate detection experiment. After adding L-Rhamose(1g/L) for 72h, we use Lactic Acid assay kit, provided by Nanjing Jiancheng Bioengineering, to quantify lactate concentration.

Figure 5. Lactate production of engineered Synechocystis sp. PCC6803. Comparison of WT, ldhD-lldP, ldhDc-lldP, ldhDnARSdR-lldP, ldhDARSdR-lldP. Synechocystis grew for 7 days, then L-Rhamose(1g/L) was added. After induced 72 hours, lactate concentration has shown above.


The figure indicates that after transforming our circuit in bacteria, the production and releasing of lactate increase evidently, and ldhDARSdR-lldP is the most efficient one. In summary, our engineered bacteria, Synechocystis sp. PCC 6803(synechocystis), do achieve our goal to provide lactate to Shewanella.

1.3 Rhodopseudomonas palustris

We try to use mleS (convert pyruvate to D-lactate), ldhA (convert pyruvate to D-lactate) and lldP (L-lactate permease) to make sure their strains could produce lactate. We construct genes into the shuttle plasmid pMG105 in E.coli BL21, and then detect it .


For example of pMG105-PpckaA-RBS -lldP-RBS-ldhA-TT (Figure 3).

Figure 6. shows gene circuits are successfully constructed into E.coli BL21.

Real-Time Quantitative PCR

we do Real-Time Quantitative PCR to verify the expression of gene circuits by E.coli BL21.

(A)

(B)

(C)

Figure 7.Relative expression level of targeted genes in E.coli BL21. We choose mleS(malate dehydrogenase, the conversion of malic acid to L-lactate), lldP(L-lactate permease, the lactate is transported out of the cell) and ldhA(fermentative D-lactate dehydrogenase, NAD-dependent, convert pyruvate to D-lactate) as the reference genes and pMG105 as the standard quantity. (A). The expression level of mleS. (B). The expression level of lldP. (C). The expression level of ldhA. We could find that mleS, lldP and ldhA have a higher expression compared with pMG105. It means every genes can express efficiently.

It shows the verification of gene expression is correct. Gene mleS, lldP and ldhA have a good expression on mRNA level.

Lactate Detection

We detect lactate production of gene circuit in E.coli BL21 (Figure8)

Figure 8.LB is a kind of medium to cultivate bacterial. We detect lactate content of LB and others. PMG105 has the lowest lactate content because pMG105 doesn’t have any gene to help produce lactate. It proves that all of our gene circuits have ability to produce lactate. Besides, compared with ldhA and lldP, ldhA-lldP has a better production efficiency; compared with ldhA-lldP, lldP-ldhA has a better production efficiency; compared with ldhA-lldP, mleS-lldP has a better production efficiency; compared with other gene circuits, mleS-lldP-ldhA has a better production efficiency. The result proves our modeling is correct.

2.1 Plasmid Construction and Conjugation

Since lactate is the carbon source of Shewanella Oneidensis MR-1, overexpression of lactate dehydrogenase might help the bacteria to utilize lactate more efficiently and produce more electricity. We chose dld(encodes D-lactate dehydrogenase), lldEFG(encodes L-lactate dehydrogenase) gapA(encodes glyceraldehyde-3-phosphate dehydrogenase), mdh(encodes NAD-dependent malate dehydrogenase), pflB(encodes pyruvate formate-lyase) and fdh(encodes formate dehydrogenase) to overexpress in Shewanella Oneidensis MR-1. All the genes were constructed into the shuttle plasmid pYYDT, which were then conjugated into Shewanella Oneidensis MR-1.

Figure 9.Verification of successful conjugation. (A). pYYDT-dld and pYYDT-lldEFG. (B). pYYDT-gapA-mdh. (C). pYYDT-pflB-fdh.

We could draw the conclusion that these genes has been successfully constructed into engineered Shewanella Oneidensis MR-1.

2.2 Verification of expression

(1). RT-qPCR

RT-qPCR(Real-Time quantitative PCR) is a technique of molecular experiment. The expression of genes could be detected by measuring the number of copies of an RNA transcript of that gene in engineered cells, which means that by doing RT-qPCR, we could demonstrate that the related genes could be expressed by engineered bacteria.

Figure 10. Relative expression level of targeted genes in engineered Shewanella Oneidensis MR-1.We chose gyrB(encodes DNA gyrase B) as the reference gene and 1 as the standard quantity. (A). The expression level of pYYDT-dld. (B). The expression level of pYYDT-gapA-mdh. (C). The expression level of pYYDT-pflB-fdh.

As shown by figure 10, it is demonstrated that these genes could be expressed in engineered Shewanella Oneidensis MR-1.

(2).Electrogenesis

Improvement about the efficiency of electricity production is our final goal. We compared the Shewanella contained targeted genes with the Shewanella with no-load vector pYYDT. If the former one could produce more electricity, our construction could be proved to receive a success.

Figure 12.The comparison of electricity production between wild type Rhodopseudomonas palustris and type Synechocystis PCC6803.

Figure 13.The comparison between Shewanella with no-load vector and Shewanella with targeted genes.


We could learn from this figure that constructed bacteria could produce more electricity, which means that the targeted genes have been expressed successfully in the cell and helped to produce more electricity.