Difference between revisions of "Team:Vilnius-Lithuania/Description"

 
(9 intermediate revisions by 3 users not shown)
Line 23: Line 23:
 
     <div class="modal-close"></div>
 
     <div class="modal-close"></div>
 
     <div class="modal-content">
 
     <div class="modal-content">
     <p><strong>Fig. 1</strong> Schematic overview of the SynDrop</p>
+
 
 +
<img style='max-width:100%' src='https://static.igem.org/mediawiki/2018/f/f7/T--Vilnius-Lithuania--DESCRIPTION_2_FIGURE.png'>
 +
     <p><strong>Fig. 1</strong> Fig. 1. Schematic overview of the SynDrop. Using microfluidic technology, we synthesize liposomes at a high throughput within which we encapsulate an in vitro transcription/translation system with DNA encoding a target membrane protein. In addition we encapsulate purified cellular membrane protein machinery and chaperones - they facilitate the insertion of synthesized target membrane proteins into the membrane. The system is also capable of displaying small molecules on the surface of the liposome, which makes SynDrop applicable for a novel liposome surface-display method.
 +
</p>
 
     <p></p>
 
     <p></p>
 
     <h2><var>“What I cannot create, I do not understand”</var></h2>
 
     <h2><var>“What I cannot create, I do not understand”</var></h2>
 
     <h6>R. Feynmann, February 1988</h6>
 
     <h6>R. Feynmann, February 1988</h6>
 
     <p></p>
 
     <p></p>
     <p><h2>Brief overview of the SynDrop - Synthetic Droplets for Membrane Protein Research.</h2></p>
+
     <p><h2 style="color: #61afaa; font-size:1.8em">Brief overview of the SynDrop - Synthetic Droplets for Membrane Protein Research.</h2></p>
 
     <p></p>
 
     <p></p>
 
     <p>
 
     <p>
Line 41: Line 44:
 
     </p>
 
     </p>
 
     <p>
 
     <p>
             However designing complex, several layered circuitries resembling the behavior of a natural cell is still an overwhelming challenge due to many limitations like crosstalk, mutations, ambiguous intracellular and extracellular conditions, and biological noise. Therefore we propose to start from something simpler and more minimal.. Although the journey of creating a synthetic minimal cell has already begun, we hoped to contribute to this ultimate goal as well by investing our time and effort. This year we are engineering liposomes, lipid-coated vesicles, that are perfect models to study the initial steps for creating synthetic cells. Liposomes can offer a system with fully controllable experimental parameters and only the exact elements for our custom circuit design without the need to ever worry about the crosstalk and noise. We believe that most of the future synthetic biology applications will rely on bottom-up engineering solutions. Having mastered some hard-core bottom-up liposome engineering, we won’t take long to create the first synthetic cell.
+
             However designing complex, several layered circuitries resembling the behavior of a natural cell is still an overwhelming challenge due to many limitations like crosstalk, mutations, ambiguous intracellular and extracellular conditions, and biological noise. Therefore we propose to start from something simpler and more minimal.. Although the journey of creating a synthetic minimal cell has already begun, we hoped to contribute to this ultimate goal as well by investing our time and effort. This year we are engineering liposomes, lipid-coated vesicles, that are perfect models to study the initial steps for creating synthetic cells. Liposomes can offer a system with fully controllable experimental parameters and only the exact elements for our custom circuit design without the need to ever worry about the crosstalk and noise. We believe that most of the future synthetic biology a
 +
pplications will rely on bottom-up engineering solutions. Having mastered some hard-core bottom-up liposome engineering, we won’t take long to create the first synthetic cell.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
Line 60: Line 64:
 
     <p></p>
 
     <p></p>
 
     <h1>Applications</h1>
 
     <h1>Applications</h1>
 +
<img style='max-width:100%' src='https://static.igem.org/mediawiki/2018/e/eb/T--Vilnius-Lithuania--Bendra_apl.png'/>
 
     <p></p>
 
     <p></p>
 
     <p>As our project focuses on a novel platform for membrane protein research it offers various future applications.
 
     <p>As our project focuses on a novel platform for membrane protein research it offers various future applications.
Line 93: Line 98:
 
     <p></p>
 
     <p></p>
 
     <h2>Phage display</h2>
 
     <h2>Phage display</h2>
     <p>fotke</p>
+
 
 +
 
 +
 
 +
     <p> <div class="image-container">
 +
                            <img src="https://static.igem.org/mediawiki/2018/e/ed/T--Vilnius-Lithuania--1_DisplaySys_phage.png"/>
 +
              </div></p>
 
     <table class="c65">
 
     <table class="c65">
 
             <tbody>
 
             <tbody>
Line 228: Line 238:
 
         </table>
 
         </table>
 
         <p></p>
 
         <p></p>
 +
 +
 +
 +
 +
 
         <h2>Ribosome Display</h2>
 
         <h2>Ribosome Display</h2>
         <p>fotke</p>
+
 
 +
 
 +
         <p><div class="image-container">
 +
                            <img src="https://static.igem.org/mediawiki/2018/f/fb/T--Vilnius-Lithuania--2_DisplaySys_ribosome.png"/>
 +
              </div></p>
 
         <table class="c65">
 
         <table class="c65">
 
                 <tbody>
 
                 <tbody>
Line 356: Line 375:
 
             </table>
 
             </table>
 
             <p></p>
 
             <p></p>
 +
 +
 +
 +
 
             <h2>Cis-Activity (Cis) Display</h2>
 
             <h2>Cis-Activity (Cis) Display</h2>
             <p>fotke</p>
+
 
 +
             <p><div class="image-container">
 +
                            <img src="https://static.igem.org/mediawiki/2018/7/71/T--Vilnius-Lithuania--3_DisplaySys_CIS.png"/>
 +
              </div></p>
 
             <table class="c65">
 
             <table class="c65">
 
                     <tbody>
 
                     <tbody>
Line 457: Line 483:
 
                 </table>
 
                 </table>
 
                 <p></p>
 
                 <p></p>
 +
 +
 
                 <h2>mRNA Display</h2>
 
                 <h2>mRNA Display</h2>
                 <p>fotke</p>
+
 
                 <<table class="c65">
+
                 <p><div class="image-container">
 +
                        <img src="https://static.igem.org/mediawiki/2018/f/f1/T--Vilnius-Lithuania--4_DisplaySys_mRNA.png"/>
 +
          </div></p>
 +
                  
 +
                <table class="c65">
 
                         <tbody>
 
                         <tbody>
 
                           <tr class="c1">
 
                           <tr class="c1">
Line 586: Line 618:
 
                     </table>
 
                     </table>
 
                     <p></p>
 
                     <p></p>
 +
 
                     <h2>Covalent Antibody Display</h2>
 
                     <h2>Covalent Antibody Display</h2>
                     <p>fotke</p>
+
                     <p><div class="image-container">
 +
                            <img src="https://static.igem.org/mediawiki/2018/1/1c/T--Vilnius-Lithuania--5_DisplaySys_CAD.png"/>
 +
              </div></p>
 +
 
 +
     
 
                     <table class="c65">
 
                     <table class="c65">
 
                             <tbody>
 
                             <tbody>
Line 708: Line 745:
 
                         </table>
 
                         </table>
 
                         <p></p>
 
                         <p></p>
 +
 +
 
                         <h2>Yeast Explay</h2>
 
                         <h2>Yeast Explay</h2>
                         <p>fotke</p>
+
 
 +
                         <p><div class="image-container">
 +
                                <img src="https://static.igem.org/mediawiki/2018/4/42/T--Vilnius-Lithuania--6_DisplaySys_Yeast.png"/>
 +
                  </div></p>
 +
                       
 
                         <table class="c65">
 
                         <table class="c65">
 
                                 <tbody>
 
                                 <tbody>
Line 819: Line 862:
 
                             </table>
 
                             </table>
 
                             <p></p>
 
                             <p></p>
 +
 +
 
                             <h2>Eukaryotic Display</h2>
 
                             <h2>Eukaryotic Display</h2>
                             <p>fotke</p>
+
 
 +
                             <p><div class="image-container">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/1/12/T--Vilnius-Lithuania--7_DisplaySys_Eukaryotic.png"/>
 +
                      </div></p>
 
                             <table class="c65">
 
                             <table class="c65">
 
                                     <tbody>
 
                                     <tbody>
Line 924: Line 972:
 
                                 </table>
 
                                 </table>
 
                                 <p></p>
 
                                 <p></p>
 +
 +
 
                                 <h2>Water-In-Oil Emulsions</h2>
 
                                 <h2>Water-In-Oil Emulsions</h2>
                                 <p>fotke</p>
+
                                 <p><div class="image-container">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/f/fb/T--Vilnius-Lithuania--8_DisplaySys_Water_in_oil.png"/>
 +
                      </div></p>
 
                                 <table class="c65">
 
                                 <table class="c65">
 
                                         <tbody>
 
                                         <tbody>
Line 1,050: Line 1,102:
 
                                     <p></p>
 
                                     <p></p>
 
                                     <h2>Liposome Display</h2>
 
                                     <h2>Liposome Display</h2>
                                     <p>fotkes</p>
+
 
 +
 
 +
                                     <p><div class="image-container">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/a/a8/T--Vilnius-Lithuania--9_DisplaySys_Liposome.png"/>
 +
                      </div></p>
 
                                     <table class="c65">
 
                                     <table class="c65">
 
                                             <tbody>
 
                                             <tbody>

Latest revision as of 20:41, 4 November 2018

Description

Describe the Impossible

Cell-free systems are becoming an increasingly popular in vitro tool to study biological processes as it is accompanied by less intrinsic and extrinsic noise. Relying on fundamental concepts of synthetic biology, we apply a bottom-up forward engineering approach to create a novel cell-free system for unorthodox protein-evolution. The core of this system is cell-sized liposomes that serve as excellent artificial membrane models. By encapsulating genetic material and full in vitro protein transcription and translation systems within the liposomes, we create reliable and incredibly efficient nanofactories for the production of target proteins. Even though there are many alternative proteins that can be synthesized, our main focus is directed towards membrane proteins, which occupy approximately one third of living-cells’ genomes. Considering their significance, membrane proteins are spectacularly understudied since synthesis and thus characterization of them remain prevailing obstacles to this day. We aim to utilize liposomes as nanofactories for directed evolution of membrane proteins. Furthermore, by means of directed membrane protein-evolution, a universal exposition system will be designed in order to display any protein of interest on the surface of the liposome. This way, a system is built where a phenotype of a particular protein is expressed on the outside while containing its genotype within the liposome. To prove the concept, small antibody fragments will be displayed to create a single-chain variable fragment (scFv) library for rapid screening of any designated target.

invert