Difference between revisions of "Team:Vilnius-Lithuania/InterLab"

 
(57 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
<h1 class="text-wall-heading">InterLab</h1>
 
<h1 class="text-wall-heading">InterLab</h1>
 
<div class="text-wall-area-box">
 
<div class="text-wall-area-box">
     <h2 class="text-wall-area-box-heading">Abstract</h2>
+
     <h2 class="text-wall-area-box-heading">Studying Fluorescence</h2>
 
     <div class="scroll-area">
 
     <div class="scroll-area">
 
         <p class="text-content">The goal of this year’s InterLab Study was to identify and minimize the sources of systematic variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of optical density (OD).</p>
 
         <p class="text-content">The goal of this year’s InterLab Study was to identify and minimize the sources of systematic variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of optical density (OD).</p>
Line 26: Line 26:
 
         <h1>Description</h1>
 
         <h1>Description</h1>
 
         <p></p>
 
         <p></p>
 +
        At the beginning of the InterLab study we completed three distinct calibration protocols. At first, we performed the <strong>LUDOX Protocol</strong> in order to obtain a conversion factor to transform absorbance (Abs<sub>600</sub>) from the plate reader into a comparable OD<sub>600</sub> measurement as would be obtained with a spectrophotometer. Next, we completed the <strong>Microsphere Protocol</strong> as it allows a standard curve of particle concentration which is used to convert Abs<sub>600</sub> measurements to an estimated number of cells. Finally, by completing the <strong>Fluorescein Protocol</strong> we generated a standard fluorescence curve which is used to compare fluorescence output of different test devices. Completion of the calibrations ensured that we take cell measurements under the same conditions. It is worth mentioning that prior calibration, we prepared competent E. coli DH5-alpha cells and transformed them according to the standard transformation protocol. During all of the experiments we tested 8 plasmids: 2 controls and 6 test devices (Tab 1).
 +
 +
<div class="image-container">
 +
        <p><strong>Tab. 1</strong> Parts received and tested during iGEM’s fifth InterLab Study</p>
 +
          <table>
 +
        <thead>
 +
          <tr>
 +
          <th><strong>Device</strong></th>
 +
          <th><Strong>Part Number</Strong></th>
 +
          <th><strong>Features</strong></th>
 +
          </tr>
 +
        </thead>
 +
        <tbody>
 +
          <tr>
 +
          <td>Negative control</td>
 +
          <td><a href="http://parts.igem.org/Part:BBa_R0040">  BBa_R0040  </td>
 +
            <td>Medium strength promoter, promoter is constitutive and repressed by TetR
 +
                    </td>
 +
          </tr>
 +
          <tr>
 +
                <td>Positive Control</td>
 +
                <td><a href="http://parts.igem.org/Part:BBa_I20270">  BBa_I20270  </td>
 +
                <td>J23151 inserted in the Promoter MeasKit</td>
 +
              </tr>
 +
              <tr>
 +
                    <td>Test Device 1</td>
 +
                    <td><a href="http://parts.igem.org/Part:BBa_J364000">  BBa_J364000  </td>
 +
                    <td>GFP expressing constitutive device</td>
 +
                  </tr>
 +
                  <tr>
 +
                        <td>Test Device 2</td>
 +
                        <td><a href="http://parts.igem.org/Part:BBa_J364001">  BBa_J364001  </td>
 +
                        <td>GFP expressing constitutive device</td>
 +
                      </tr>
 +
                      <tr>
 +
                            <td>Test Device 3</td>
 +
                            <td><a href="http://parts.igem.org/Part:BBa_J364002">  BBa_J364002  </td>
 +
                            <td>GFP expressing constitutive device</td>
 +
                          </tr>
 +
                          <tr>
 +
                                <td>Test Device 4</td>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_J364007">  BBa_J364007  </td>
 +
                                <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                              </tr>
 +
                              <tr>
 +
                                    <td>Test Device 5</td>
 +
                                    <td><a href="http://parts.igem.org/Part:BBa_J364008">  BBa_J364008  </td>
 +
                                    <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                                    </tr>
 +
                                    <tr>
 +
                                          <td>Test Device 6</td>
 +
                                          <td><a href="http://parts.igem.org/Part:BBa_J364009">  BBa_J364009  </td>
 +
                                          <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                                        </tr>
 +
        </tbody>
 +
        </table>
 +
</div>
 +
 +
<p></p>
 
         <p></p>
 
         <p></p>
         <p>At the beginning of the InterLab study we completed three distinct calibration protocols. At first, we performed the LUDOX Protocol in order to obtain a conversion factor to transform absorbance (Abs600) from the plate reader into a comparable OD600 measurement as would be obtained with a spectrophotometer. Next, we completed the Microsphere Protocol as it allows a standard curve of particle concentration which is used to convert Abs600 measurements to an estimated number of cells. Finally, by completing the Fluorescein Protocol we generated a standard fluorescence curve which is used to compare fluorescence output of different test devices. Completion of the calibrations ensured that we take cell measurements under the same conditions. It is worth mentioning that prior calibration, we prepared competent E. coli DH5-alpha cells and transformed them according to the standard transformation protocol. During all of the experiments we tested 8 plasmids: 2 controls and 6 test devices (Table 1). </p>
+
         <h1>Results and Discussion</h1>
        <p>Table 1. Parts received and tested during iGEM’s fifth InterLab Study</p>
+
        <p> Table 1. </p>
+
        <p></p>
+
        <p></p>
+
<h2>RESULTS AND DISCUSSION </h2>
+
 
         <p></p>
 
         <p></p>
<h3>1. MEASUREMENT OF LUDOX CL-X OD600 REFERENCE POINT</h3>
+
<h3>1. MEASUREMENT OF LUDOX CL-X OD<sub>600</sub> REFERENCE POINT</h3>
 
              
 
              
  
 
         <p></p>
 
         <p></p>
  <p>Using LUDOX CL-X as a single point reference allowed us to obtain a ratiometric conversion factor to transform absorbance data into a standard OD600 measurement. This is crucial to ensure that plate reader measurements are not volume dependent. After this calibration part we obtained a radiometric conversion factor (Table 2) which will be used in further Interlab study measurements.</p> <p></p> <p></p> <p></p> <p></p> <p></p> <p></p>
+
  <p>Using LUDOX CL-X as a single point reference allowed us to obtain a ratiometric conversion factor to transform absorbance data into a standard OD<sub>600</sub> measurement. This is crucial to ensure that plate reader measurements are not volume dependent. After this calibration part we obtained a radiometric conversion factor (Tab. 2) which will be used in further Interlab study measurements.</p>
        <p>The framework also includes a possibility of adding a selection system that reduces the usage of antibiotics
+
 
            (only 1 antibiotic for up to 5 different plasmids!) and an active partitioning system to make sure that low
+
<div class="image-container">
            copy number plasmid groups are not lost during the division.
+
<p><strong>Tab. 2</strong> LUDOX CL-X measurement. Obtained ratiometric conversion factor is 3,419</p>
        </p>
+
<table>
 +
    <thead>
 +
    <tr>
 +
      <th><strong></strong></th>
 +
      <th><Strong>LUDOX CL-X</Strong></th>
 +
      <th><strong>H<small>2</small>O</strong></th>
 +
    </tr>
 +
    </thead>
 +
    <tbody>
 +
    <tr>
 +
      <td>Negative control</td>
 +
      <td><a href="http://parts.igem.org/Part:BBa_R0040">  BBa_R0040  </td>
 +
      <td>Medium strength promoter, promoter is constitutive and repressed by TetR
 +
              </td>
 +
    </tr>
 +
    <tr>
 +
          <td>Positive Control</td>
 +
          <td><a href="http://parts.igem.org/Part:BBa_I20270">  BBa_I20270  </td>
 +
          <td>J23151 inserted in the Promoter MeasKit</td>
 +
        </tr>
 +
        <tr>
 +
              <td>Test Device 1</td>
 +
              <td><a href="http://parts.igem.org/Part:BBa_J364000">  BBa_J364000  </td>
 +
              <td>GFP expressing constitutive device</td>
 +
              </tr>
 +
              <tr>
 +
                    <td>Test Device 2</td>
 +
                    <td><a href="http://parts.igem.org/Part:BBa_J364001">  BBa_J364001  </td>
 +
                    <td>GFP expressing constitutive device</td>
 +
                  </tr>
 +
                  <tr>
 +
                      <td>Test Device 3</td>
 +
                      <td><a href="http://parts.igem.org/Part:BBa_J364002">  BBa_J364002  </td>
 +
                      <td>GFP expressing constitutive device</td>
 +
                      </tr>
 +
                      <tr>
 +
                            <td>Test Device 4</td>
 +
                            <td><a href="http://parts.igem.org/Part:BBa_J364007">  BBa_J364007  </td>
 +
                            <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                          </tr>
 +
                          <tr>
 +
                                <td>Test Device 5</td>
 +
                                <td><a href="http://parts.igem.org/Part:BBa_J364008">  BBa_J364008  </td>
 +
                                <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                              </tr>
 +
                              <tr>
 +
                                    <td>Test Device 6</td>
 +
                                    <td><a href="http://parts.igem.org/Part:BBa_J364009">  BBa_J364009  </td>
 +
                                    <td>Expresses GFP under the control of a constitutive promoter from the Anderson collection</td>
 +
                                  </tr>
 +
    </tbody>
 +
  </table>
 +
</div>
 
         <p></p>
 
         <p></p>
        <div class="img-cont">
+
         <p></p>
            <img src="https://static.igem.org/mediawiki/parts/8/84/Collect.png" alt="img">
+
<h3>2. GRAPHING A SILICA MICROSPHERE ABSORBANCE (Abs<sub>600</sub>) STANDARD CURVE</h3>
            <div class="img-label">
+
            </div>
+
        </div>
+
        <h2>Applications</h2>
+
         <p>
+
            <h5>Everyday lab work</h5>
+
            <p>
+
                A multi-plasmid system that is easy to assemble and control. With our framework the need to limit your
+
                research to a particular plasmid copy number just because there are not enough right replicons to
+
                choose from, is eliminated. With SynORI you can easily create a vector with a desired copy number that
+
                suits your needs.</li>
+
            </p>
+
            <h5>Biological computing</h5>
+
            <p>
+
                The ability to choose a wide range of copy number options and their control types will make the
+
                synthetic biology engineering much more flexible and predictable. Introduction of plasmid copy number
+
                regulation is equivalent to adding a global parameter to a computer system. It enables the coordination
+
                of multiple gene group expression.
+
            </p>
+
            <h5>Smart assembly of large protein complexes</h5>
+
            <p>
+
                The co-expression of multi-subunit complexes using different replicons brings incoherency to an already
+
                chaotic cell system. This can be avoided by using SynORI, as in this framework every plasmid group uses
+
                the same type of control, and in addition can act in a group-specific manner.</p>
+
  
            <h5>Metabolic engineering</h5>
+
<p></p>
            <p>
+
<p>Monodisperse silica microspheres exhibit size and optical characteristics similar to cells, with the additional benefit that the number of particles in a solution is known. Therefore, this measurement allowed us to construct a standard curve which can be used to convert Abs<sub>600</sub> measurements to an estimated number of cells.
                A big challenge for heterologous expression of multiple gene pathways is to accurately adjust the
+
</p>
                levels of each enzyme to achieve optimal production efficiency. Precise promoter tuning in
+
<div class="image-container">
                transcriptional control and synthetic ribosome binding sites in translational control are already
+
<img src="https://static.igem.org/mediawiki/2018/3/31/T--Vilnius-Lithuania--1_InterLab.png"/>
                widely used to maintain expression levels. In addition to current approaches, our framework allows a
+
      <p><strong>Fig. 1</strong> LUDOX CL-X measurement. Obtained ratiometric conversion factor is 3,419.</p>
                simultaneous multiple gene control. Furthermore, an inducible regulation that we offer, can make the
+
</div>
                search for perfect conditions a lot easier.
+
  
 +
<div class="image-container">
 +
<img src="https://static.igem.org/mediawiki/2018/b/bc/T--Vilnius-Lithuania--2_InterLab.png"/>
 +
      <p><strong>Fig. 2</strong> Particle standard curve generated by measuring the absorbance of serial dilutions of silica microspheres (known amount of particles per volume) displayed in a log scale to demonstrate a linear relationship between particle count per volume and absorbance.</p>
 +
<div class="image-container">
 +
       
 +
<p>During this calibration part we obtained two particle standard curves which are important for proper cell measurement. However, we can observe a curve in the log scale graph (Fig.  1), although it should have a 1:1 slope. We assume that this inconsistency could have been due to pipetting errors or an oversaturated detector.
 +
</p>
 +
        <p></p>
  
 +
<h3>3. GRAPHING A FLUORESCEIN FLUORESCENCE STANDARD CURVE</h3>
  
            </p>
+
<p>In the last part of the calibration we prepared a dilution series of fluorescein in four replicates and measured the fluorescence. During this calibration part we generated a standard curve of fluorescence for fluorescein concentration.</p>
 +
          <p></p>
 +
<div class="image-container">
 +
<img src="https://static.igem.org/mediawiki/2018/b/b0/T--Vilnius-Lithuania--3_InterLab.png">
 +
      <p><strong>Fig. 3</strong> Standard curve of fluorescein generated by measuring the fluorescence of serial dilution stock (µM). Fluorescence is plotted against the fluorescein concentration.</p>
 +
</div>
  
 +
<div class="image-container">
 +
<img src="https://static.igem.org/mediawiki/2018/d/d8/T--Vilnius-Lithuania--4_InterLab.png">
 +
      <p><strong>Fig. 4</strong> A standard curve of fluorescein generated by measuring the fluorescence of serial dilution stock (µM). Fluorescence is plotted against the fluorescein concentration on a logarithmic scale.
 +
</p>
 +
</div>
 +
      <p>During this calibration part we generated a standard curve of fluorescein. Standard curves (linear and on a logarithmic scale) have a 1:1 slope which ensures us that there were no significant mistakes during this calibration part and the data can be used for cell measurement. This allows us to successfully convert cell based readings to an equivalent fluorescein concentration.</p>
 +
 +
<h1>Cell Measurements</h1>
 +
<p></p>
 +
<p>For cell measurements we used the same settings that we used in our calibration measurements. At first, according to the standard protocol we transformed cells with 8 different plasmids (Tab. 1). We picked 2 colonies from each transformation plates and inoculated in 5-10 mL LB medium + Chloramphenicol. We grew the cells overnight (16-18 hours) at 37 °C and 220 rpm. After that we diluted the cultures to a target Abs<sub>600</sub> of 0.02. We took samples from these diluted cultures prior to incubation and after 6 hours of incubation measured Abs600 (Fig.  5) and fluorescence (Fig.  6). </p>
 +
 +
<p></p>
 +
<div class="image-container">
 +
<img src="https://static.igem.org/mediawiki/2018/1/1d/T--Vilnius-Lithuania--5_InterLab.png">
 +
      <p><strong>Fig. 5</strong> Graph comparing the raw Abs<sub>600</sub> prior incubation and at hour 6 for each colony using each control/device</p>
 +
</div>
 +
<p></p>
 +
 +
<div class="image-container">
 +
<img src="https://static.igem.org/mediawiki/2018/b/bb/T--Vilnius-Lithuania--6_InterLab.png">
 +
      <p><strong>Fig. 6 </strong>Graph comparing the raw fluorescence prior to incubation and at hour 6 for each colony using each control/device</p>
 +
</div>
 +
 +
<p>Comparing absorbance and fluorescence of cells prior to incubation and after 6 hours we can observe that absorbance as well as fluorescence were more intense after 6 h of incubation as it was expected.
 +
Based on the assumption that one bacterial cell gives rise to one colony, colony forming units per 1 mL of an OD<sub>600</sub> = 0.1 culture was calculated by counting the colonies on each plate with fewer than 300 colonies and multiplying the colony count by the Final Dilution Factor on each plate The results are shown in Tab. 3.</p>
 +
 +
 +
<div class="image-container">
 +
<p> <strong>Tab. 3</strong> Colony forming units (CFU) per 1 mL of an OD<sub>600</sub> = 0.1culture</p>
 +
 +
<p><table>
 +
    <thead>
 +
    <tr>
 +
      <th><strong>Samples</strong></th>
 +
      <th><Strong>CFU/ml in Starting Sample</Strong></th>
 +
    </tr>
 +
    </thead>
 +
    <tbody>
 +
        </tr>
 +
    <tr>
 +
        <td>1.1 Positive Control</td>
 +
        <td>0.132667 * 10^8</td>
 +
    </tr> <tr>
 +
            <td>1.2 Positive Control</td>
 +
        <td>0.086667 * 10^8</td>
 +
  </tr> <tr>
 +
            <td>1.3 Positive Control</td>
 +
        <td>0.271333 * 10^8</td>
 +
    </tr> <tr>
 +
            <td>2.1 Positive Control</td>
 +
        <td>0.448667 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>2.2 Positive Control</td>
 +
        <td>0.394667 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>2.3 Positive Control</td>
 +
        <td>0.659667 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>3.1 Negative Control</td>
 +
        <td>0.236 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>3.2 Negative Control</td>
 +
        <td>0.722 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>3.3 Negative Contro</td>
 +
        <td>0.346667 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>4.1 Negative control</td>
 +
        <td>0.494 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>4.2 Negative control</td>
 +
        <td>0.279 * 10^8</td>
 +
    </tr>  <tr>
 +
            <td>4.3 Negative control</td>
 +
        <td>0.395 * 10^8</td>
 +
    </tr>                                                                                                       
 +
    </tbody>
 +
  </table></p>
 +
 +
</div>
  
        </p>
 
        <p>
 
        </p>
 
        <table style="width:100%">
 
<thead>
 
<td align='center'>Species sign in ODE system</td>
 
<td align='center'>Species</td>
 
<td align='center'>Initial concentration (M)</td>
 
</thead>
 
<tbody>
 
<tr>
 
<td align='center'>A</td>
 
<td align='center'>pDNA+RNA I+RNAII early</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>B</td>
 
<td align='center'>pDNA+RNA II short</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>RNAI</td>
 
<td align='center'>RNA I</td>
 
<td align='center'>1E-6</td>
 
</tr>
 
<tr>
 
<td align='center'>D</td>
 
<td align='center'>pDNA+RNA II long</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>E</td>
 
<td align='center'>pDNA+RNAII primer</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>F</td>
 
<td align='center'>RNA II long</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>G</td>
 
<td align='center'>pDNA</td>
 
<td align='center'>4E-8*</td>
 
</tr>
 
<tr>
 
<td align='center'>H</td>
 
<td align='center'>pDNA+RNA II+RNA I late</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>RNA II</td>
 
<td align='center'>RNA II</td>
 
<td align='center'>0</td>
 
</tr>
 
<tr>
 
<td align='center'>J</td>
 
<td align='center'>RNAI+RNAII</td>
 
<td align='center'>0</td>
 
</tr>
 
</tbody>
 
</table>
 
 
     </div>
 
     </div>
 
</div>
 
</div>
 
             </div>
 
             </div>
 +
            </div>
 +
        </div>
 
                 <div class="carrot-back">
 
                 <div class="carrot-back">
 
                     <a class="carrot-anchor-back" href="">
 
                     <a class="carrot-anchor-back" href="">
Line 160: Line 275:
 
                     </a>
 
                     </a>
 
                 </div>
 
                 </div>
            </div>
 
        </div>
 
 
     </div>
 
     </div>
 
         <div class="invert-box">
 
         <div class="invert-box">

Latest revision as of 21:42, 4 November 2018

InterLab

Studying Fluorescence

The goal of this year’s InterLab Study was to identify and minimize the sources of systematic variability in fluorescence measurements by normalizing to absolute cell count or colony-forming units (CFUs) instead of optical density (OD).

Participating in the fifth iGEM InterLab Study was a great opportunity to start this year’s competition as well as acquire some valuable knowledge which we implemented into practice during the project.

invert