Difference between revisions of "Team:Ecuador/Model"

 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
{{Ecuador}}
 
{{Ecuador}}
 
<html>
 
<html>
 +
 
<head>
 
<head>
 
<meta charset="utf-8">
 
<meta charset="utf-8">
Line 111: Line 112:
 
padding-top: 20px;
 
padding-top: 20px;
 
padding-bottom: 20px;
 
padding-bottom: 20px;
 +
color: black;
 +
line-height: 40px;
 
}
 
}
 
.ec--p{
 
.ec--p{
Line 184: Line 187:
 
<div class="ec--first--section">
 
<div class="ec--first--section">
 
<div class="ec--main--title">
 
<div class="ec--main--title">
<a name="MOD"  style="text-decoration: none;"><h1>MATHEMATICAL MODELLING</h1></a>
+
<a name="MOD"  style="text-decoration: none;"><a name="INT" style="text-decoration:none;"></a>
 +
<h1>
 +
MATHEMATICAL MODELING
 +
</h1>
 +
</a>
 
</div>
 
</div>
 
<div class="ec--modeling--items">
 
<div class="ec--modeling--items">
<h3>Index</h3>
+
<h3><a href="#INT" style="color:black; text-decoration: none">Index</a></h3>
 
<ul class="circle">
 
<ul class="circle">
<li>List of variables and  constants</li>
+
<li><a href="#LOV" style="color:black; text-decoration: none">List of variables and  constants</a></li>
                 <li>IPTG-inducible model</li>
+
                 <li>I<a href="#IND3" style="color:black; text-decoration: none">PTG-inducible model</a></li>
 
                 <ul>
 
                 <ul>
                   <li>Entry of IPTG into the  cell</li>
+
                   <li><a href="#IND4" style="color:black; text-decoration: none">Entry of IPTG into the  cell</a></li>
                   <li>CBD cipA-BMP2  expression</li>
+
                   <li><a href="#IND5" style="color:black; text-decoration: none">CBD cipA-BMP2  expression</a></li>
                   <li>Kinetic constants</li>
+
                   <li><a href="#IND6" style="color:black; text-decoration: none">Kinetic constants</a></li>
 
                 </ul>
 
                 </ul>
                 <li>Results of the  IPTG-inducible model</li>
+
                 <li><a href="#IND7" style="color:black; text-decoration: none">Results of the  IPTG-inducible model</a></li>
 
                 <ul>
 
                 <ul>
                   <li>Calculation of entry of  IPTG into the cell</li>
+
                   <li><a href="#IND8" style="color:black; text-decoration: none">Calculation of entry of  IPTG into the cell</a></li>
                   <li>IPTG-LacI repressor  interaction</li>
+
                   <li>I<a href="#IND9" style="color:black; text-decoration: none">PTG-LacI repressor  interaction</a></li>
                   <li>Calculation and  validation of CBD cipA-BMP2 expression</li>
+
                   <li><a href="#IND10" style="color:black; text-decoration: none">Calculation and  validation of CBD cipA-BMP2 expression</a></li>
 
                 </ul>
 
                 </ul>
                 <li>Conclusions</li>
+
                 <li><a href="#IND11" style="color:black; text-decoration: none">Conclusions</a></li>
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 210: Line 217:
 
<div class="ec--nau--content">
 
<div class="ec--nau--content">
 
<div class="ec--sect--title">
 
<div class="ec--sect--title">
<a name="INT"><div class="ec--h2">INTRODUCTION</div></a>
+
 +
<div class="ec--h2">
 +
INTRODUCTION
 +
</div>
 +
 
                 <div class="ec--p">
 
                 <div class="ec--p">
 
                    
 
                    
 
                     This  is an IPTG-inducible model for the expression of the fusion protein CBD  cipA-BMP2 under the control of Plac promoter and cloned in psb1c3. The vector  does not contain the ORF of LacI and thus the LacI repressor protein concentration  is that in <em>E</em>. <em>coli</em> strains (10nM per cell).1<br>
 
                     This  is an IPTG-inducible model for the expression of the fusion protein CBD  cipA-BMP2 under the control of Plac promoter and cloned in psb1c3. The vector  does not contain the ORF of LacI and thus the LacI repressor protein concentration  is that in <em>E</em>. <em>coli</em> strains (10nM per cell).1<br>
                     The  model consists of systems of differential equations that were solved in Python  using Spyder 3.6 (Anaconda).
+
                     <a name="LOV" style="text-decoration:none;"></a>The  model consists of systems of differential equations that were solved in Python  using Spyder 3.6 (Anaconda).
</div><div class="ec--h2"><strong>LIST OF VARIABLES AND CONSTANTS</strong></div>
+
</div>
 +
 +
<a name="LOV2" style="text-decoration:none;">
 +
<div class="ec--h2">
 +
LIST OF VARIABLES AND CONSTANTS
 +
</div>
 +
</a>
 
                   <table border="1" cellspacing="0" cellpadding="0" width="571">
 
                   <table border="1" cellspacing="0" cellpadding="0" width="571">
 
                     <tr>
 
                     <tr>
                       <td width="142" nowrap valign="top"><br>
+
                       <td width="142" nowrap valign="top"><div class="ec--p"><strong>Variable/Constant</strong></div></td>
                        <strong>Variable/Constant</strong></td>
+
 
                       <td width="328" nowrap valign="top"><div class="ec--p"><strong>Definition</strong></div></td>
 
                       <td width="328" nowrap valign="top"><div class="ec--p"><strong>Definition</strong></div></td>
 
                       <td width="101" nowrap valign="top"><div class="ec--p"><strong>Unit/Value</strong></div></td>
 
                       <td width="101" nowrap valign="top"><div class="ec--p"><strong>Unit/Value</strong></div></td>
Line 304: Line 320:
 
                     </tr>
 
                     </tr>
 
                     <tr>
 
                     <tr>
                       <td width="142" nowrap valign="top"><div class="ec--p">hIPTG</div></td>
+
                       <td width="142" nowrap valign="top"><div class="ec--p"><a name="IND3"></a>hIPTG</div></td>
 
                       <td width="328" nowrap valign="top"><div class="ec--p">Hill coefficient of IPTG-LacI binding </div></td>
 
                       <td width="328" nowrap valign="top"><div class="ec--p">Hill coefficient of IPTG-LacI binding </div></td>
 
                       <td width="101" nowrap valign="top"><div class="ec--p">2</div></td>
 
                       <td width="101" nowrap valign="top"><div class="ec--p">2</div></td>
 
                     </tr>
 
                     </tr>
 +
 
 
                     <tr>
 
                     <tr>
 
                       <td width="142" nowrap valign="top"><div class="ec--p">HLacI</div></td>
 
                       <td width="142" nowrap valign="top"><div class="ec--p">HLacI</div></td>
Line 314: Line 331:
 
                     </tr>
 
                     </tr>
 
                   </table>
 
                   </table>
                   <div class="ec--h2"><strong>IPTG-INDUCIBLE MODEL FOR CBD CIPA-BMP2 PROTEIN  EXPRESSION IN </strong><strong><em>E</em></strong><strong><em>. </em></strong><strong><em>coli</em></strong><strong> </strong></div>
+
                   <div class="ec--h2"><strong><a name="IND4"></a>IPTG-INDUCIBLE MODEL FOR CBD CIPA-BMP2 PROTEIN  EXPRESSION IN </strong><strong><em>E</em></strong><strong><em>. </em></strong><strong><em>coli</em></strong><strong> </strong></div>
 
                   <div class="ec--p"><strong>Entry of IPTG into <em>E. coli</em></strong><br>
 
                   <div class="ec--p"><strong>Entry of IPTG into <em>E. coli</em></strong><br>
 
                     Mimicking lactose, IPTG is a chemical widely used  in scientific research because it cannot be metabolized. IPGT induces the  expression of genes under the control of Plac promoter. </div>
 
                     Mimicking lactose, IPTG is a chemical widely used  in scientific research because it cannot be metabolized. IPGT induces the  expression of genes under the control of Plac promoter. </div>
Line 334: Line 351:
 
</center>
 
</center>
  
   Equation 3 (Eq 3) describes the amount of  unbounded LacI that actively repress the expression of a protein driven by the  Plac promoter; the expression of CBD cipA-BMP2 in the  present study. [LacI]TOTAL is the concentration of LacI inside <em>E</em>. <em>coli</em>, KIPTG is the Michaelis constant of IPTG-LacI binding (6000 M) 5 and hIPTG is the associated Hill coefficient (2).3,6</div>
+
   Equation 3 (Eq 3) describes the amount of  unbounded LacI that actively repress the expression of a protein driven by the  Plac promoter; the expression of CBD cipA-BMP2 in the  present study. <a name="IND5"></a>[LacI]TOTAL is the concentration of LacI inside <em>E</em>. <em>coli</em>, KIPTG is the Michaelis constant of IPTG-LacI binding (6000 M) 5 and hIPTG is the associated Hill coefficient (2).3,6</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
 
<div class="ec--p"><strong>CBD cipA-BMP2 EXPRESSION</strong></div>
 
<div class="ec--p"><strong>CBD cipA-BMP2 EXPRESSION</strong></div>
<div class="ec--p"><strong>            </strong><strong><u>CBD cipA-BMP2 mRNA</u></strong></div>
+
<div class="ec--p"><strong>           </strong><strong><u>CBD cipA-BMP2 mRNA</u></strong></div>
 
<div class="ec--p">The CBD  cipA-BMP2 mRNA concentration ([CB]mRNA) at time t can be described as follows:</div>
 
<div class="ec--p">The CBD  cipA-BMP2 mRNA concentration ([CB]mRNA) at time t can be described as follows:</div>
 
<br><center>
 
<br><center>
Line 344: Line 361:
 
</center>
 
</center>
  
<div class="ec--p">The first term on the right side of the equation  2.6 represents the synthesis of mRNA. kPlac is the maximum transcriptional rate corresponding to the Plac promoter (0.5 nM min-1).3 αCEB+(1-αCEB) is the leakiness factor where αCEB is the  transcriptional leakage of Plac promoter.  is the repressing Hill function of Plac promoter where KLacI is the Michaelis constant of LacI-Plac promoter binding (6000 M), 3 and hLacI is the associated Hill coefficient(2).3 The second term  represents the degradation of the [CB]mRNA where δ[CB]<strong> </strong>is the degradation rate.3,6,7<br>
+
<div class="ec--p">The first term on the right side of the equation  2.6 represents the synthesis of mRNA. kPlac is the maximum transcriptional rate corresponding to the Plac promoter (0.5 nM min-1).3 αCEB+(1-αCEB) is the leakiness factor where αCEB is the  transcriptional leakage of Plac promoter. is the repressing Hill function of Plac promoter where KLacI is the Michaelis constant of LacI-Plac promoter binding (6000 M), 3 and hLacI is the associated Hill coefficient(2).3 The second term  represents the degradation of the [CB]mRNA where δ[CB]<strong> </strong>is the degradation rate.3,6,7<br>
 
   Because there is not constitutive expression of  LacI protein from the plasmid cloned in <em>E</em>. <em>coli</em> carrying the CBD cipA-BMP2 construct and based on our preliminary measurements of total  protein concentration using BCA method, the transcriptional leakage can be  taken to be 0.8 and thus the balance for [CB]mRNA becomes:
 
   Because there is not constitutive expression of  LacI protein from the plasmid cloned in <em>E</em>. <em>coli</em> carrying the CBD cipA-BMP2 construct and based on our preliminary measurements of total  protein concentration using BCA method, the transcriptional leakage can be  taken to be 0.8 and thus the balance for [CB]mRNA becomes:
 
<br><center>
 
<br><center>
Line 351: Line 368:
 
</center>
 
</center>
  
<div class="ec--p"><strong>&nbsp;</strong></div>
+
<div class="ec--p"><strong>&#160;</strong></div>
 
<div class="ec--p"><strong><u>CBD cipA-BMP2 protein</u></strong><br>
 
<div class="ec--p"><strong><u>CBD cipA-BMP2 protein</u></strong><br>
 
   <br>
 
   <br>
Line 359: Line 376:
 
  <br>Eq 6.
 
  <br>Eq 6.
 
</center>
 
</center>
   The first term on the right side of the equation  6 represents the synthesis of [CB] where β[CB] is the translational rate of [CB]. The second term represents the degradation of [CB] where σ[CB] is the degradation rate.</div>
+
   <a name="IND6"></a>The first term on the right side of the equation  6 represents the synthesis of [CB] where β[CB] is the translational rate of [CB]. The second term represents the degradation of [CB] where σ[CB] is the degradation rate.</div>
 
 
 
<div class="ec--p"><strong>KINETIC CONSTANTS</strong><br>
 
<div class="ec--p"><strong>KINETIC CONSTANTS</strong><br>
 
   The time cell division of E. coli is function of factors such as pressure, temperature and culture medium  and ranging from 20-30 min under optimal conditions. Culturing in universal  common medium such as Nutrient Broth and Luria-Bertani at 35 ℃, the time cell division can be assumed to be 30  min.8,9,10<br>
 
   The time cell division of E. coli is function of factors such as pressure, temperature and culture medium  and ranging from 20-30 min under optimal conditions. Culturing in universal  common medium such as Nutrient Broth and Luria-Bertani at 35 ℃, the time cell division can be assumed to be 30  min.8,9,10<br>
 
   The half life of mRNAs in E. coli has been well reported by Bernstein and coworkers who determined that it  depends of culture medium. In, LB 99% of mRNAs had a half-life time between  1-15 min with a mean of 5.2 min.11 Therefore, 5.2 min can be assumed as the  half-life time of CBD cipA -BMP2 mRNA. Consequently, δ[CB<strong>]</strong>= 0.226 min-1. <br>
 
   The half life of mRNAs in E. coli has been well reported by Bernstein and coworkers who determined that it  depends of culture medium. In, LB 99% of mRNAs had a half-life time between  1-15 min with a mean of 5.2 min.11 Therefore, 5.2 min can be assumed as the  half-life time of CBD cipA -BMP2 mRNA. Consequently, δ[CB<strong>]</strong>= 0.226 min-1. <br>
   In <em>E</em>. <em>coli</em> , the translation takes place at 12-21 amino  acids per second (aa s-1).12 We choose 19 aa s-1 because  the codon optimization. Because CBD cipA-BMP2 contains 292 aa, β[CB]<strong> </strong>can be taken to be 3.904 min-1.The  half life of CBD cipA-BMP2 protein can be assumed to be 60 min-1, 13 consequently,  σ[CB]= 0.05min-1: </div>
+
   In <em>E</em>. <em>coli</em> , the translation takes place at 12-21 amino  acids per second (aa s-1).12 We choose 19 aa s-1 because  the codon optimization. <a name="IND7"></a><strong><a name="IND8"></a></strong>Because CBD cipA-BMP2 contains 292 aa, β[CB]<strong> </strong>can be taken to be 3.904 min-1.The  half life of CBD cipA-BMP2 protein can be assumed to be 60 min-1, 13 consequently,  σ[CB]= 0.05min-1:</div>
<div class="ec--p"><strong>RESULTS OF THE IPTG-INDUCIBLE MODEL FOR CBD cipA-BMP2  PROTEIN EXPRESSION IN </strong><strong><em>E</em></strong><strong><em>. </em></strong><strong><em>coli</em></strong></div>
+
<div class="ec--h2">RESULTS OF THE IPTG-INDUCIBLE MODEL FOR CBD cipA-BMP2  PROTEIN EXPRESSION IN E. coli</div>
 
<div class="ec--p"><strong>Calculation of entry of IPTG into </strong><strong><em>E</em></strong><strong><em>. </em></strong><strong><em>coli</em></strong><br>
 
<div class="ec--p"><strong>Calculation of entry of IPTG into </strong><strong><em>E</em></strong><strong><em>. </em></strong><strong><em>coli</em></strong><br>
 
   Figure 1 is a rate balance plot derived from  Equation 1 whith both forward and backward rates as functions of the normalized  [IPTG]int concentration whose value in the equilibrium (steady  state) can be obtained where the two functions intersect. Analitically, this  point is [IPTG]int =0.9485[IPTG]TOTAL <br>
 
   Figure 1 is a rate balance plot derived from  Equation 1 whith both forward and backward rates as functions of the normalized  [IPTG]int concentration whose value in the equilibrium (steady  state) can be obtained where the two functions intersect. Analitically, this  point is [IPTG]int =0.9485[IPTG]TOTAL <br>
Line 372: Line 389:
 
<br><center>
 
<br><center>
 
<img src="https://static.igem.org/mediawiki/2018/1/1f/T--Ecuador--rate.jpg"/>
 
<img src="https://static.igem.org/mediawiki/2018/1/1f/T--Ecuador--rate.jpg"/>
</center>
+
 
 +
</center>
 
</div>
 
</div>
&nbsp;
+
<p><a name="IND9"></a>
 +
 +
</p>
 +
<p>&nbsp;</p>
 
</div>
 
</div>
<br>
+
 
 
   <strong>Figure 1.</strong> Rate balance of IPTG diffusion through E. coli membrane. Forward and  backward rates are plotted versus normalized [IPTG]int </div>
 
   <strong>Figure 1.</strong> Rate balance of IPTG diffusion through E. coli membrane. Forward and  backward rates are plotted versus normalized [IPTG]int </div>
<div class="ec--p"><strong>IPTG-LacI repressor interaction</strong><br>
+
 +
<div class="ec--p"><strong>IPTG-LacI repressor interaction</strong><br>
 
   Because of IPTG is the inducer, it is important  to evaluate its interaction with LacI repressor at different initial  concentrations added to the system ([IPTG]TOTAL). For these  values the [LacI]act can be calculated with Equation 3 (Table 1). From table 1 and figure 4, it  can be deduced that a concentration of IPTG = 0.1 mM is saturating because the  solutions derived from higher IPTG values converge. </div>
 
   Because of IPTG is the inducer, it is important  to evaluate its interaction with LacI repressor at different initial  concentrations added to the system ([IPTG]TOTAL). For these  values the [LacI]act can be calculated with Equation 3 (Table 1). From table 1 and figure 4, it  can be deduced that a concentration of IPTG = 0.1 mM is saturating because the  solutions derived from higher IPTG values converge. </div>
 
<div class="ec--p">Table 1. [LacI]act for different initial IPTG concentrations. </div>
 
<div class="ec--p">Table 1. [LacI]act for different initial IPTG concentrations. </div>
Line 384: Line 406:
 
   <table border="1" cellspacing="0" cellpadding="0" width="437">
 
   <table border="1" cellspacing="0" cellpadding="0" width="437">
 
     <tr>
 
     <tr>
       <td width="212" nowrap valign="top"><br>
+
       <td width="212" nowrap valign="top">
        <strong>[IPTG]TOTAL    (mM)</strong></td>
+
<div class="ec--p"><strong>[IPTG]TOTAL    (mM)</strong></div></td>
       <td width="225" nowrap valign="top"><div class="ec--p"><strong>[LacI]act (nM)</strong><strong> </strong></div></td>
+
       <td width="225" nowrap valign="top"><div class="ec--p"><strong>[LacI]act (nM)</strong></div></td>
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>
Line 409: Line 431:
 
     </tr>
 
     </tr>
 
   </table>
 
   </table>
</div>
+
  <a name="IND10"></a></div>
<div class="ec--p"><strong>&nbsp;</strong></div>
+
<div class="ec--p"></div>
 +
<div class="ec--p"><br></div><div class="ec--p"><br></div>
 +
<div class="ec--p"><strong>&#160;</strong></div>
 
<div class="ec--p"><strong>Calculation and validation of CBD cipA-BMP2  expression</strong></div>
 
<div class="ec--p"><strong>Calculation and validation of CBD cipA-BMP2  expression</strong></div>
 
<div class="ec--p">The mathematical model for the expression of CBD  cipA-BMP2 is:
 
<div class="ec--p">The mathematical model for the expression of CBD  cipA-BMP2 is:
Line 428: Line 452:
  
 
   Because the two igenvalues (λ1= -0.226 y λ2 = -0.05) are negative, the equilibrium point is a  stable node.</div>
 
   Because the two igenvalues (λ1= -0.226 y λ2 = -0.05) are negative, the equilibrium point is a  stable node.</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
<div class="ec--p"><strong>          <u>Time step selection and phase plane</u></strong><br>
+
<div class="ec--p"><strong>         <u>Time step selection and phase plane</u></strong><br>
 
   A reasonable error less than 0.01 for both mRNA and  protein concentrations was obtained with a time step Dt=0.1/8. Therefore, this Dt was considered to evaluate a phase plane plot  which indicates the equilibrium points of the mathematical model. To determine  the maximum concentrations of CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein, a  saturating concentration of IPTG (IPTG=0.1 mM) was evaluated. This is a  monostable system where the equilibrium point at the steady state (Figure 2) is  2.21 nM and 172.69nM for CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein  respectively.</div>
 
   A reasonable error less than 0.01 for both mRNA and  protein concentrations was obtained with a time step Dt=0.1/8. Therefore, this Dt was considered to evaluate a phase plane plot  which indicates the equilibrium points of the mathematical model. To determine  the maximum concentrations of CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein, a  saturating concentration of IPTG (IPTG=0.1 mM) was evaluated. This is a  monostable system where the equilibrium point at the steady state (Figure 2) is  2.21 nM and 172.69nM for CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein  respectively.</div>
 
<div class="ec--p">
 
<div class="ec--p">
Line 442: Line 466:
  
 
<div class="ec--p"><strong>Figure 2.</strong> Phase plane plot of the molecular species of  CBD cipA-BMP2 with IPTG=0.1 mM as saturating concentration. The stable  equilibrium point is at 2.21 nM and 172.69 nM for [CB]mRNA and [CB], respectively. </div>
 
<div class="ec--p"><strong>Figure 2.</strong> Phase plane plot of the molecular species of  CBD cipA-BMP2 with IPTG=0.1 mM as saturating concentration. The stable  equilibrium point is at 2.21 nM and 172.69 nM for [CB]mRNA and [CB], respectively. </div>
<div class="ec--p"><strong>          </strong><strong><u>Expression at different IPTG inducer concentrations</u></strong><strong><u> </u></strong><br>
+
<div class="ec--p"><strong>         </strong><strong><u>Expression at different IPTG inducer concentrations</u></strong><strong><u> </u></strong><br>
 
   Different values of [LacI]act cause a different effect in the mathematical  model for expression of [CB]mRNA and [CB]. Figure 3 and Figure 4 show the  concentrations of [CB]mRNA and [CB], respectively, as functions of time with a time step size Dt=0.1/8. It is worth to note that the higher IPTG dosage  the higher [CB]mRNA and [CB] until the saturating level of IPTG = 0.1 mM.</div>
 
   Different values of [LacI]act cause a different effect in the mathematical  model for expression of [CB]mRNA and [CB]. Figure 3 and Figure 4 show the  concentrations of [CB]mRNA and [CB], respectively, as functions of time with a time step size Dt=0.1/8. It is worth to note that the higher IPTG dosage  the higher [CB]mRNA and [CB] until the saturating level of IPTG = 0.1 mM.</div>
 
<div class="ec--p">
 
<div class="ec--p">
Line 460: Line 484:
 
</center>
 
</center>
 
</div>
 
</div>
&nbsp;
+
&#160;<a name="IND11"></a>
 
</div>
 
</div>
  
 
<div class="ec--p"><strong>Figure 4.</strong> CBD cipA-BMP2 protein concentration  as function of time. The concentration is dependent of the IPTG  inducer until the saturating level (IPTG=0.1 mM).</div>
 
<div class="ec--p"><strong>Figure 4.</strong> CBD cipA-BMP2 protein concentration  as function of time. The concentration is dependent of the IPTG  inducer until the saturating level (IPTG=0.1 mM).</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
<div class="ec--p"><strong>CONCLUSIONS</strong></div>
+
<div class="ec--h2">CONCLUSIONS</div>
<div class="ec--p">The present IPTG-inducible mathematical model,  where a fusion protein CBD cipA-BMP2 was cloned in psb1c3, can be analyzed in  two stages. First, the concentration of the IPTG inducer added to the culture  medium interacts with the repressor protein LacI following the Hill equation.  Then, the expression of CBD cipA-BMP2 becomes relieved, and at saturating  concentrations of IPTG ≥ 0.1 mM it reaches the highest value (CBD  cipA-BMP2 protein = 172.69nM, CBD cipA-BMP2 mRNA=2.21 nM).<br>
+
<div class="ec--p">The present IPTG-inducible mathematical model,  where a fusion protein CBD cipA-BMP2 was cloned in psb1c3, can be analyzed in  two stages. First, the concentration of the IPTG inducer added to the culture  medium interacts with the repressor protein LacI following the Hill equation.  Then, the expression of CBD cipA-BMP2 becomes relieved, and at saturating  concentrations of IPTG ≥ 0.1 mM it reaches the highest value (CBD  cipA-BMP2 protein = 172.69nM, CBD cipA-BMP2 mRNA=2.21 nM).</div><br>
  The IPTG concentration inside E. coli is 94,845% of the total IPTG added to the culture  medium. Moreover, the phase line analysis of the ODE representing the IPTG  concentration inside <em>E</em><em>. </em><em>coli</em> as function of time showed that the equilibrium point  is stable.<br>
+
<div class="ec--p">
 +
The IPTG concentration inside E. coli is 94,845% of the total IPTG added to the culture  medium. Moreover, the phase line analysis of the ODE representing the IPTG  concentration inside <em>E</em><em>. </em><em>coli</em> as function of time showed that the equilibrium point  is stable.</div>
 
   The linearization of the mathematical model revealed  an stable equilibrium point for the expression of CBD cipA-BMP2 because two  negative igenvalues,</div>
 
   The linearization of the mathematical model revealed  an stable equilibrium point for the expression of CBD cipA-BMP2 because two  negative igenvalues,</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
<div class="ec--p"><strong>REFERENCES</strong><br>
+
<div class="ec--h2">REFERENCES</div>
 +
<div class="ec--p">
 
   1. Oehler, S.  (2009). Feedback Regulation of Lac Repressor Expression in <em>Escherichia coli</em>. Journal of Bacteriology, 191(16), 5301–5303.  http://doi.org/10.1128/JB.00427-09<br>
 
   1. Oehler, S.  (2009). Feedback Regulation of Lac Repressor Expression in <em>Escherichia coli</em>. Journal of Bacteriology, 191(16), 5301–5303.  http://doi.org/10.1128/JB.00427-09<br>
 
   2. Ukkonen, K.  Vasala, A. (2015). Protein expression by IPTG autoinduction in EnPresso  B:Protocol with minimal manual work and superior yields compared to other  media.BioSilta. Retrieved on june 24th, 2018 from  https://bioscience.co.uk/userles/pdf/Application%20Note%20-%20Protein%20expression%20by%20IPTG%20autoinduction%20in%20EnPresso%20B.pdf.<br>
 
   2. Ukkonen, K.  Vasala, A. (2015). Protein expression by IPTG autoinduction in EnPresso  B:Protocol with minimal manual work and superior yields compared to other  media.BioSilta. Retrieved on june 24th, 2018 from  https://bioscience.co.uk/userles/pdf/Application%20Note%20-%20Protein%20expression%20by%20IPTG%20autoinduction%20in%20EnPresso%20B.pdf.<br>
 
   3. Team TUDelft. (2009).Bacterial Relay Race.  International Genetically Enginereed Machines. Retrieved on june 25th, 2018  from https://2009.igem.org/Team:TUDelft.</div>
 
   3. Team TUDelft. (2009).Bacterial Relay Race.  International Genetically Enginereed Machines. Retrieved on june 25th, 2018  from https://2009.igem.org/Team:TUDelft.</div>
 
<div class="ec--p">4. Semsey, S., Jaured, L., Csiszovszki, Z.,  Erdssy, J., Stger, V., Hansen, S. Krishna, S. (2014).The effect of LacI  autoregulation on the performanceof the lactose utilization system in <em>Escherichia coli</em>. <em>Nucleic Acids Research</em>,41 (13),6381?6390.https://academic.oup.com/nar/article/41/13/6381/1120421.</div>
 
<div class="ec--p">4. Semsey, S., Jaured, L., Csiszovszki, Z.,  Erdssy, J., Stger, V., Hansen, S. Krishna, S. (2014).The effect of LacI  autoregulation on the performanceof the lactose utilization system in <em>Escherichia coli</em>. <em>Nucleic Acids Research</em>,41 (13),6381?6390.https://academic.oup.com/nar/article/41/13/6381/1120421.</div>
<div class="ec--p">5.   University of California Berkeley.(2006).Berkeley. International  Genetically Enginereed Machines.Retrieved on july 14th, 2018 from  https://2006.igem.org/wiki/index.php/Berkeley<br>
+
<div class="ec--p">5.   University of California Berkeley.(2006).Berkeley. International  Genetically Enginereed Machines.Retrieved on july 14th, 2018 from  https://2006.igem.org/wiki/index.php/Berkeley<br>
 
   6. Ozbudak, E., Thattai, M., Lim, H., Shraiman,  B. Van Oudenaarden, A. (2004).Multistability in the lactose utilization network  of <em>Escherichia coli</em>. Nature, 427  (1476-4687), 737?740.https://www.nature.com/articles/nature02298.</div>
 
   6. Ozbudak, E., Thattai, M., Lim, H., Shraiman,  B. Van Oudenaarden, A. (2004).Multistability in the lactose utilization network  of <em>Escherichia coli</em>. Nature, 427  (1476-4687), 737?740.https://www.nature.com/articles/nature02298.</div>
 
<div class="ec--p">7. Michel, D. (2013). Kinetic approaches to  lactose operon induction and bimodality. Journal of Theoretical Biology 325,  6275.https://www.sciencedirect.com/science/article/pii/S0022519313000659?via</div>
 
<div class="ec--p">7. Michel, D. (2013). Kinetic approaches to  lactose operon induction and bimodality. Journal of Theoretical Biology 325,  6275.https://www.sciencedirect.com/science/article/pii/S0022519313000659?via</div>
<div class="ec--p">8. Moulton, G. (2014). Fed-Batch Fermentation A  Practical Guide to Scalable Recombinant Protein Production in Escherichia coli. Retrieved from https://books.google.com.ec/books?id=MTpYc3fAyICpg=20lpg=PA20dq=doubling+time+recombinant+e+coli+30+minutessource=ots=97TxFmAXwsig=W3OJJYLqLEF5Z48fXRfVTPqPP4hl=essa=Xved=ahUKEwi505aivqTcAhVSuVkKHVaDTgQ6AEwCHoECAgQAQv=onepageq=20-30</div>
+
<div class="ec--p">8. Moulton, G. (2014). Fed-Batch Fermentation A  Practical Guide to Scalable Recombinant Protein Production in Escherichia coli. Retrieved from <a href="https://books.google.com.ec/books?id=MTpYc3fAyICpg=20lpg=PA20dq=doubling+time+recombinant+e+coli+30+minutessource=ots=97TxFmAXwsig=W3OJJYLqLEF5Z48fXRfVTPqPP4hl=essa=Xved=ahUKEwi505aivqTcAhVSuVkKHVaDTgQ6AEwCHoECAgQAQv=onepageq=20-30">Google Books</a>.</div>
 
<div class="ec--p">9. Galli, E., Midonet, C., Paly, E. Barre, F.  (2017).Pressure and Temperature Dependence of Growth and Morphology of <em>Escherichia coli</em>:Experiments and Stochastic Model. Plos Genetics,13(3):e1006702.https://doi.org/10.1371/journal.pgen.1006702.  ://jour-nals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006702</div>
 
<div class="ec--p">9. Galli, E., Midonet, C., Paly, E. Barre, F.  (2017).Pressure and Temperature Dependence of Growth and Morphology of <em>Escherichia coli</em>:Experiments and Stochastic Model. Plos Genetics,13(3):e1006702.https://doi.org/10.1371/journal.pgen.1006702.  ://jour-nals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006702</div>
<div class="ec--p">10. Hovgaard, L., Frokjaer, S. van de Weert, M.  (2013).Pharmaceutical Formulation Development of Peptides and Proteins. Second  Edition. Retrieved from<br>
+
<div class="ec--p">10. Hovgaard, L., Frokjaer, S. van de Weert, M.  (2013).Pharmaceutical Formulation Development of Peptides and Proteins. Second  Edition. Retrieved from <a href="https://books.google.com.ec/books?id=MTpYc3fAyICpg=PA20lpg=20dq=doubling+time+recombinant+e+coli+30+minutessource_blots=p97TxFmAXwsig=W3OJJYLqLEF5Z48fXRfVTPqPP4hl=essa=Xved=ahUKEwi505aivqTcAhVSuVkKHVaDTgQ6AEwCHoECAgQAQv=onepageq=20-30">Google Books</a>. </div>
  https://books.google.com.ec/books?id=MTpYc3fAyICpg=PA20lpg=20dq=doubling+time+recombinant+e+coli+30+minutessource_blots=p97TxFmAXwsig=W3OJJYLqLEF5Z48fXRfVTPqPP4hl=essa=Xved=ahUKEwi505aivqTcAhVSuVkKHVaDTgQ6AEwCHoECAgQAQv=onepageq=20-30</div>
+
 
<div class="ec--p">11. Bernstein, J., Khodursky, A., Lin, P., Chao,  S. Cohen, S. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two color  fluorescent DNA microarrays. Proceedings of the National Academy of Sciences of the United States  of America. 99 (15) 9697-9702. ://www.pnas.org/content/99/15/9697</div>
 
<div class="ec--p">11. Bernstein, J., Khodursky, A., Lin, P., Chao,  S. Cohen, S. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two color  fluorescent DNA microarrays. Proceedings of the National Academy of Sciences of the United States  of America. 99 (15) 9697-9702. ://www.pnas.org/content/99/15/9697</div>
 
<div class="ec--p">12. Bremer, H.,  Dennis, P. P. (1996) Modulation of chemical composition and other parameters of  the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella  typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, pp. 1559,  Table 3</div>
 
<div class="ec--p">12. Bremer, H.,  Dennis, P. P. (1996) Modulation of chemical composition and other parameters of  the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella  typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, pp. 1559,  Table 3</div>
 
<div class="ec--p">13. Team PKU  Beijing.(2009).PKU IGEM . International Genetically Enginereed Machines.  Retrieved on july 16th, 2018 from://2009.igem.org/Team:PKU  Beijing/Modeling/Parameters</div>
 
<div class="ec--p">13. Team PKU  Beijing.(2009).PKU IGEM . International Genetically Enginereed Machines.  Retrieved on july 16th, 2018 from://2009.igem.org/Team:PKU  Beijing/Modeling/Parameters</div>
<div class="ec--p">&nbsp;</div>
+
<div class="ec--p">&#160;</div>
 
                   <div class="ec--p">The main goal of our work is to develop a functionalized cellulose-based biomaterial for bone and cartilage regeneration in order to allow a faster injuries recovery time and overcome remaining challenges in repairing these connective tissues. In biomedicine, emergent strategies have focused the use biomaterials loaded with drugs.1-3 We aimed to use bacterial cellulose, a biocompatible biomaterial, as scaffold for the delivery of the human bone morphogenetic protein 2 (BMP2). It is worth to note that the diffusion of a drug far of the action site can become ectopic tissue formation, representing a serious problem. Therefore, we focused to attach the BMP2 by the use of a cellulose binding domain (CBD). We choose the CBD of the scaffolding protein of C. thermocellum (CBD cipA) because the higher affinity compared to other CBDs, reported by the Team Imperial_2014. Moreover, in an effort for a longer broad application of a functionalized bacterial cellulose, such as wound healing, we also fused the CBD cipA with an elastin like polypeptide (ELP_C5) derived from the ELP- [V-150].</div>
 
                   <div class="ec--p">The main goal of our work is to develop a functionalized cellulose-based biomaterial for bone and cartilage regeneration in order to allow a faster injuries recovery time and overcome remaining challenges in repairing these connective tissues. In biomedicine, emergent strategies have focused the use biomaterials loaded with drugs.1-3 We aimed to use bacterial cellulose, a biocompatible biomaterial, as scaffold for the delivery of the human bone morphogenetic protein 2 (BMP2). It is worth to note that the diffusion of a drug far of the action site can become ectopic tissue formation, representing a serious problem. Therefore, we focused to attach the BMP2 by the use of a cellulose binding domain (CBD). We choose the CBD of the scaffolding protein of C. thermocellum (CBD cipA) because the higher affinity compared to other CBDs, reported by the Team Imperial_2014. Moreover, in an effort for a longer broad application of a functionalized bacterial cellulose, such as wound healing, we also fused the CBD cipA with an elastin like polypeptide (ELP_C5) derived from the ELP- [V-150].</div>
 
                 </div>
 
                 </div>

Latest revision as of 22:53, 19 November 2018

C-lastin, Interlab
INTRODUCTION
This is an IPTG-inducible model for the expression of the fusion protein CBD cipA-BMP2 under the control of Plac promoter and cloned in psb1c3. The vector does not contain the ORF of LacI and thus the LacI repressor protein concentration is that in E. coli strains (10nM per cell).1
The model consists of systems of differential equations that were solved in Python using Spyder 3.6 (Anaconda).
LIST OF VARIABLES AND CONSTANTS
Variable/Constant
Definition
Unit/Value
[IPTG] TOTAL
Total IPTG concentration in the medium
nM
[IPTG]ext
IPTG concentration outside E. coli
nM
[IPTG]int
IPTG concentration inside E. coli
nM
[IPTG]TOTAL
Total LacI concentration in E. coli
nM
[LacI]act
Active LacI concentration in E. coli
nM
[CB]mRNA
CBD-BMP2 mRNA concentration in E. coli
nM
[CB]
CBD-BMP2 protein concentration in E. coli
nM
δ[CB]
Degradation rate of CBD-BMP2 mRNA
min-1
β[CB]
Translational rate of CBD-BMP2 protein
min-1
σ[CB]
Degradation rate of CBD-BMP2 protein
min-1
t
time
min
α[CB]
Transcriptional leakage of Plac promoter
%
kPlac
Maximum transcription rate of Plac promoter
0.5 nM min-1
kIPTGupt
Rate constant of IPTG uptake
0.92 min-1
kIPTGout
Rate constant of IPTG output
0.05 min-1
KIPTG
Michaelis constant of IPTG-LacI binding
600 nM
hIPTG
Hill coefficient of IPTG-LacI binding
2
HLacI
Hill coefficient of LacI-Plac promoter binding
2
IPTG-INDUCIBLE MODEL FOR CBD CIPA-BMP2 PROTEIN EXPRESSION IN E. coli
Entry of IPTG into E. coli
Mimicking lactose, IPTG is a chemical widely used in scientific research because it cannot be metabolized. IPGT induces the expression of genes under the control of Plac promoter.
IPTG enters into E. coli cells in a concentration dependent manner. This uptake is mediated by lactose permease and passive diffusion at low and high concentrations respectively.2 The IPTG uptake through passive diffusion can be described with the law of mass action expressing the balance between IPTG concentration outside (IPTGext) and inside (IPTGint) of E. coli :

Eq 1.
The first term on the right side of Eq 1 represents the forward rate where kIPTGupt is the rate constant of IPTG uptake (0.92 min-1)3 while the second term has negative sign because it represents the backward rate where kIPTGout is the rate constant of IPTG output (0.05 min-1).3 Because of [IPTG]ext = [IPTG]TOTAL - [IPTG]int, it can be replaced in equation 1 in order to have IPTGint as the unique independent variable:

Eq 2.
The LacI-IPTG interaction is assumed to be so fast and when the IPTG concentration largely exceeds that of lacI. The LacI active ([LacI]act), i.e that unbounded to IPTG, can be described with the Hill repression function.4,2


Eq 3.
Equation 3 (Eq 3) describes the amount of unbounded LacI that actively repress the expression of a protein driven by the Plac promoter; the expression of CBD cipA-BMP2 in the present study. [LacI]TOTAL is the concentration of LacI inside E. coli, KIPTG is the Michaelis constant of IPTG-LacI binding (6000 M) 5 and hIPTG is the associated Hill coefficient (2).3,6
 
CBD cipA-BMP2 EXPRESSION
CBD cipA-BMP2 mRNA
The CBD cipA-BMP2 mRNA concentration ([CB]mRNA) at time t can be described as follows:


Eq 4.
The first term on the right side of the equation 2.6 represents the synthesis of mRNA. kPlac is the maximum transcriptional rate corresponding to the Plac promoter (0.5 nM min-1).3 αCEB+(1-αCEB) is the leakiness factor where αCEB is the transcriptional leakage of Plac promoter. is the repressing Hill function of Plac promoter where KLacI is the Michaelis constant of LacI-Plac promoter binding (6000 M), 3 and hLacI is the associated Hill coefficient(2).3 The second term represents the degradation of the [CB]mRNA where δ[CB] is the degradation rate.3,6,7
Because there is not constitutive expression of LacI protein from the plasmid cloned in E. coli carrying the CBD cipA-BMP2 construct and based on our preliminary measurements of total protein concentration using BCA method, the transcriptional leakage can be taken to be 0.8 and thus the balance for [CB]mRNA becomes:

Eq 5.
 
CBD cipA-BMP2 protein

The concentration of CBD cipA-BMP2 protein ([CB]) can be described as follows:

Eq 6.
The first term on the right side of the equation 6 represents the synthesis of [CB] where β[CB] is the translational rate of [CB]. The second term represents the degradation of [CB] where σ[CB] is the degradation rate.
KINETIC CONSTANTS
The time cell division of E. coli is function of factors such as pressure, temperature and culture medium and ranging from 20-30 min under optimal conditions. Culturing in universal common medium such as Nutrient Broth and Luria-Bertani at 35 ℃, the time cell division can be assumed to be 30 min.8,9,10
The half life of mRNAs in E. coli has been well reported by Bernstein and coworkers who determined that it depends of culture medium. In, LB 99% of mRNAs had a half-life time between 1-15 min with a mean of 5.2 min.11 Therefore, 5.2 min can be assumed as the half-life time of CBD cipA -BMP2 mRNA. Consequently, δ[CB]= 0.226 min-1.
In E. coli , the translation takes place at 12-21 amino acids per second (aa s-1).12 We choose 19 aa s-1 because the codon optimization. Because CBD cipA-BMP2 contains 292 aa, β[CB] can be taken to be 3.904 min-1.The half life of CBD cipA-BMP2 protein can be assumed to be 60 min-1, 13 consequently, σ[CB]= 0.05min-1:
RESULTS OF THE IPTG-INDUCIBLE MODEL FOR CBD cipA-BMP2 PROTEIN EXPRESSION IN E. coli
Calculation of entry of IPTG into E. coli
Figure 1 is a rate balance plot derived from Equation 1 whith both forward and backward rates as functions of the normalized [IPTG]int concentration whose value in the equilibrium (steady state) can be obtained where the two functions intersect. Analitically, this point is [IPTG]int =0.9485[IPTG]TOTAL
rate

 

Figure 1. Rate balance of IPTG diffusion through E. coli membrane. Forward and backward rates are plotted versus normalized [IPTG]int
IPTG-LacI repressor interaction
Because of IPTG is the inducer, it is important to evaluate its interaction with LacI repressor at different initial concentrations added to the system ([IPTG]TOTAL). For these values the [LacI]act can be calculated with Equation 3 (Table 1). From table 1 and figure 4, it can be deduced that a concentration of IPTG = 0.1 mM is saturating because the solutions derived from higher IPTG values converge.
Table 1. [LacI]act for different initial IPTG concentrations.
[IPTG]TOTAL (mM)
[LacI]act (nM)
0,001
9.7562
0,02
0.9095
0,03
0.4257
0.1
0.0399
1.0
0.0004


 
Calculation and validation of CBD cipA-BMP2 expression
The mathematical model for the expression of CBD cipA-BMP2 is:

Eq 7.
The stability of the system can be analyzed with the Jacobian matrix associated to the system of differential equations:
JACOBIAN

Because the two igenvalues (λ1= -0.226 y λ2 = -0.05) are negative, the equilibrium point is a stable node.
 
Time step selection and phase plane
A reasonable error less than 0.01 for both mRNA and protein concentrations was obtained with a time step Dt=0.1/8. Therefore, this Dt was considered to evaluate a phase plane plot which indicates the equilibrium points of the mathematical model. To determine the maximum concentrations of CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein, a saturating concentration of IPTG (IPTG=0.1 mM) was evaluated. This is a monostable system where the equilibrium point at the steady state (Figure 2) is 2.21 nM and 172.69nM for CBD cipA-BMP2 mRNA and CBD cipA-BMP2 protein respectively.
Plano

Figure 2. Phase plane plot of the molecular species of CBD cipA-BMP2 with IPTG=0.1 mM as saturating concentration. The stable equilibrium point is at 2.21 nM and 172.69 nM for [CB]mRNA and [CB], respectively.
Expression at different IPTG inducer concentrations
Different values of [LacI]act cause a different effect in the mathematical model for expression of [CB]mRNA and [CB]. Figure 3 and Figure 4 show the concentrations of [CB]mRNA and [CB], respectively, as functions of time with a time step size Dt=0.1/8. It is worth to note that the higher IPTG dosage the higher [CB]mRNA and [CB] until the saturating level of IPTG = 0.1 mM.
RNA

Figure 3. CBD cipA-BMP2 mRNA concentration as function of time. The concentration is dependent of levels of IPTG inducer until the saturating concentration (IPTG=0.1 mM).
CB protein

 
Figure 4. CBD cipA-BMP2 protein concentration as function of time. The concentration is dependent of the IPTG inducer until the saturating level (IPTG=0.1 mM).
 
CONCLUSIONS
The present IPTG-inducible mathematical model, where a fusion protein CBD cipA-BMP2 was cloned in psb1c3, can be analyzed in two stages. First, the concentration of the IPTG inducer added to the culture medium interacts with the repressor protein LacI following the Hill equation. Then, the expression of CBD cipA-BMP2 becomes relieved, and at saturating concentrations of IPTG ≥ 0.1 mM it reaches the highest value (CBD cipA-BMP2 protein = 172.69nM, CBD cipA-BMP2 mRNA=2.21 nM).

The IPTG concentration inside E. coli is 94,845% of the total IPTG added to the culture medium. Moreover, the phase line analysis of the ODE representing the IPTG concentration inside E. coli as function of time showed that the equilibrium point is stable.
The linearization of the mathematical model revealed an stable equilibrium point for the expression of CBD cipA-BMP2 because two negative igenvalues,
 
 
REFERENCES
1. Oehler, S. (2009). Feedback Regulation of Lac Repressor Expression in Escherichia coli. Journal of Bacteriology, 191(16), 5301–5303. http://doi.org/10.1128/JB.00427-09
2. Ukkonen, K. Vasala, A. (2015). Protein expression by IPTG autoinduction in EnPresso B:Protocol with minimal manual work and superior yields compared to other media.BioSilta. Retrieved on june 24th, 2018 from https://bioscience.co.uk/userles/pdf/Application%20Note%20-%20Protein%20expression%20by%20IPTG%20autoinduction%20in%20EnPresso%20B.pdf.
3. Team TUDelft. (2009).Bacterial Relay Race. International Genetically Enginereed Machines. Retrieved on june 25th, 2018 from https://2009.igem.org/Team:TUDelft.
4. Semsey, S., Jaured, L., Csiszovszki, Z., Erdssy, J., Stger, V., Hansen, S. Krishna, S. (2014).The effect of LacI autoregulation on the performanceof the lactose utilization system in Escherichia coli. Nucleic Acids Research,41 (13),6381?6390.https://academic.oup.com/nar/article/41/13/6381/1120421.
5. University of California Berkeley.(2006).Berkeley. International Genetically Enginereed Machines.Retrieved on july 14th, 2018 from https://2006.igem.org/wiki/index.php/Berkeley
6. Ozbudak, E., Thattai, M., Lim, H., Shraiman, B. Van Oudenaarden, A. (2004).Multistability in the lactose utilization network of Escherichia coli. Nature, 427 (1476-4687), 737?740.https://www.nature.com/articles/nature02298.
7. Michel, D. (2013). Kinetic approaches to lactose operon induction and bimodality. Journal of Theoretical Biology 325, 6275.https://www.sciencedirect.com/science/article/pii/S0022519313000659?via
8. Moulton, G. (2014). Fed-Batch Fermentation A Practical Guide to Scalable Recombinant Protein Production in Escherichia coli. Retrieved from Google Books.
9. Galli, E., Midonet, C., Paly, E. Barre, F. (2017).Pressure and Temperature Dependence of Growth and Morphology of Escherichia coli:Experiments and Stochastic Model. Plos Genetics,13(3):e1006702.https://doi.org/10.1371/journal.pgen.1006702. ://jour-nals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006702
10. Hovgaard, L., Frokjaer, S. van de Weert, M. (2013).Pharmaceutical Formulation Development of Peptides and Proteins. Second Edition. Retrieved from Google Books.
11. Bernstein, J., Khodursky, A., Lin, P., Chao, S. Cohen, S. (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two color fluorescent DNA microarrays. Proceedings of the National Academy of Sciences of the United States of America. 99 (15) 9697-9702. ://www.pnas.org/content/99/15/9697
12. Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, pp. 1559, Table 3
13. Team PKU Beijing.(2009).PKU IGEM . International Genetically Enginereed Machines. Retrieved on july 16th, 2018 from://2009.igem.org/Team:PKU Beijing/Modeling/Parameters
 
The main goal of our work is to develop a functionalized cellulose-based biomaterial for bone and cartilage regeneration in order to allow a faster injuries recovery time and overcome remaining challenges in repairing these connective tissues. In biomedicine, emergent strategies have focused the use biomaterials loaded with drugs.1-3 We aimed to use bacterial cellulose, a biocompatible biomaterial, as scaffold for the delivery of the human bone morphogenetic protein 2 (BMP2). It is worth to note that the diffusion of a drug far of the action site can become ectopic tissue formation, representing a serious problem. Therefore, we focused to attach the BMP2 by the use of a cellulose binding domain (CBD). We choose the CBD of the scaffolding protein of C. thermocellum (CBD cipA) because the higher affinity compared to other CBDs, reported by the Team Imperial_2014. Moreover, in an effort for a longer broad application of a functionalized bacterial cellulose, such as wound healing, we also fused the CBD cipA with an elastin like polypeptide (ELP_C5) derived from the ELP- [V-150].