Difference between revisions of "Template:Groningen/Model"

 
(39 intermediate revisions by 3 users not shown)
Line 9: Line 9:
 
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
 
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Template:Groningen/Javascript&action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Template:Groningen/Javascript&action=raw&ctype=text/javascript"></script>
</head>
 
<body>
 
<!-- BEGIN CONTENT --------------------------------------------------->
 
<div class="igem_2018_team_content" style="background-color: white">
 
  
    <div class="igem_2018_team_column_wrapper">
 
        <div class="column">
 
         
 
            <img src="https://static.igem.org/mediawiki/2018/b/b3/T--Groningen--banner_overview.png" class="responsive-img">
 
 
 
 
 
<div class="container" style="background-color: white !important; padding: 0 !important;">
 
    <div class="col-lg-12 col-md-12 col-xs-12" style="padding: 0 !important; margin: 0px important!;">
 
 
   
 
<div class="container" style="position: relative; left: -10px; border-left: 5px solid #393939; border-top: 5px solid #393939; padding: 0 !important">
 
    <div class="col-lg-12 col-md-12 col-xs-12 content" style="text-align: justify; text-color: #393939 !important; padding: 20px 5px 0px 20px !important; font-weight: bold !important; font-family: 'Open Sans' !important">
 
    <div class="header-image" style="width:100%;"><img src="https://static.igem.org/mediawiki/2017/a/ad/T--Heidelberg--Team_Heidelberg_2017_modeling_graphical_abstract.jpg" width="100%" height="auto"> </div>
 
       
 
        Successful <i>in vivo</i> directed evolution by PREDCEL and PACE requires the thorough consideration of experimental parameters, e.g. phage propagation times, culture dilution rates and inducer/inhibitor concentrations. We employed extensive ODE-based and stochastic modeling to identify the most sensitive parameters and adapt our experiments accordingly. First, we calibrated our models using phage propagation experiments from our wet lab complemented with literature data. Simulations showed that the phage titer is highly sensitive to culture dilution rates. We simulated batch times and transfer volumes for PREDCEL and corresponding flow rates for PACE to determine optimized conditions for gene pool selection while avoiding phage washout. We also estimated phage titer monitoring intervals for cost and labor efficient QC/monitoring as well as inducer/inhibitor concentrations required to express the required mutagenic polymerases.  Finally, we provide a web-based, fully interactive modeling platform that not only informed our wet lab experiments, but enables future iGEM teams to efficiently build on our work.
 
   
 
    </div>
 
</div>
 
 
    <div class="container">
 
  <div class="row">
 
    <div class="col-lg-12 col-md-12 col-xs-12 content" style="display: inline-block; padding-bottom: 10px; padding-top:10px;">
 
     
 
       
 
           
 
 
<style>
 
<style>
.card {
 
  padding: 20px 15px;
 
  -webkit-box-shadow: 0px 0px 5px 1px rgba(0, 0, 0, 0.75);
 
  -moz-box-shadow: 0px 0px 5px 1px rgba(0, 0, 0, 0.75);
 
  box-shadow: 0px 0px 5px 1px rgba(0, 0, 0, 0.25);
 
  text-align: center;
 
  border-left-color: #005493 !important;
 
}
 
   
 
    .card p {
 
    text-align: left;
 
    font-size: 20px !important}
 
    .card-button {
 
    font-family: 'Open Sans' !important;
 
    overflow: hidden;
 
    width: 100%;
 
    position: relative;
 
    font-size: 25px !important;
 
    /* 20px */
 
    font-weight: 400;
 
    background-color: #005493;
 
    text-overflow: ellipsis;
 
    white-space: nowrap;
 
    cursor: pointer;
 
    display: inline-block;
 
    overflow: hidden;
 
    color: white !important;
 
    padding: 0.625rem 1.25rem;
 
    border-left-color: #005493 !important;
 
    }
 
    .card-button:hover {
 
        color: #CFCECE !important;
 
    }
 
           
 
    .equal_height {
 
    display: -webkit-flex;
 
  display: -ms-flexbox;
 
  display: flex;
 
  -webkit-flex-wrap: wrap;
 
  -ms-flex-wrap: wrap;
 
  flex-wrap: wrap;
 
    }
 
    .equal_height > .col-md-4 {
 
  display: -webkit-flex;
 
  display: -ms-flexbox;
 
  display: flex;
 
 
    }
 
</style>
 
  
<section class="teaser content equal_height" style="padding-top: 100px;">
+
.row_m {
   
+
  display: flex;
               
+
  flex-wrap: wrap;
<div class="col-lg-4 col-md-4 col-xs-12">
+
  margin: auto;
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
  width: 98%;
  
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/2/2b/T--Heidelberg--2017_phage-titer-logo.png" width="60%" alt="Card image cap">
+
}
        <div class="card-body">
+
          <h4 class="card-title" style="width: 100%;">Phage titer</h4>
+
          <p class="card-text content" style="width: 100%;">
+
                Simulations of phage and <i>E. coli</i> titer support both PREDCEL and PACE by helping to choose a set of experimental parameters that is both efficient in terms of directed evolution and in terms of usability.</p>
+
        </div>
+
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Phage_Titer" class="card-button">Numeric Model
+
                </a>
+
        </div>
+
      </div>
+
</div>
+
  
               
+
/* Create four equal column_ms that sits next to each other */
<div class="col-lg-4 col-md-4 col-xs-12">
+
.column_m {
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
  flex: 31%;
 +
  max-width: 31%;
  
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/e/e3/T--Heidelberg--2017_interactive_tools-logo.png" width="60%" alt="Card image cap">
+
}
        <div class="card-body">
+
.col_box {
          <h4 class="card-title" style="width: 100%;">Interactive Webtools</h4>
+
  padding: 4px;
          <p class="card-text content" style="width: 100%;">
+
  background-color: #00973930;
                Use the interactive tools to simulate the conditions you are interested in and explore how the combined experimental parameters influence experimental outcomes.</p>
+
  border-left: 6px solid;
        </div>
+
  border-color: #00973970;
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
  margin: 8px;
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Tools" class="card-button">Overview
+
}
                </a>
+
.column_m img {
        </div>
+
  margin-top: 8px;
      </div>
+
  vertical-align: middle;
</div>
+
  max-width: 80%;
 +
}
  
               
+
/* Responsive layout - makes a two column_m-layout instead of four column_ms */
<div class="col-lg-4 col-md-4 col-xs-12">
+
@media screen and (max-width: 800px) {
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
  .column_m {
 +
    flex: 50%;
 +
    max-width: 50%;
 +
  }
 +
}
  
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/4/48/T--Heidelberg--2017_mutagenesis-induction-logo.png" width="60%" alt="Card image cap">
+
/* Responsive layout - makes the two column_ms stack on top of each other instead of next to each other */
        <div class="card-body">
+
@media screen and (max-width: 600px) {
          <h4 class="card-title" style="width: 100%;">Mutagenesis Induction</h4>
+
  .column_m {
          <p class="card-text content" style="width: 100%;">
+
    flex: 100%;
                Model the glucose and arabinose concentration to make sure mutagenesis plasmids are sufficiently induced to get optimal mutagenesis conditions for both PREDCEL and PACE.</p><a href="https://2017.igem.org/Team:Heidelberg/Model/Mutagenesis_Induction" class="card-button">Analytic Model</a><p></p><p style="text-align: center !important;"><a href="https://2017.igem.org/Team:Heidelberg/Model/Glucose" class="card-button">Glucose Tool</a></p><p></p>
+
    max-width: 100%;
        </div>
+
  }
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
}
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Arabinose" class="card-button">Arabinose Tool
+
                </a>
+
        </div>
+
      </div>
+
</div>
+
  
               
+
</style>
<div class="col-lg-4 col-md-4 col-xs-12">
+
</head>
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
<body>
 +
<!-- BEGIN CONTENT --------------------------------------------------->
 +
<div class="igem_2018_team_content" style="background-color: white">
  
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/8/8e/T--Heidelberg--2017_lagoon_contamination-logo.png" width="60%" alt="Card image cap">
+
    <div class="igem_2018_team_column_wrapper">
        <div class="card-body">
+
         <div class="column">
          <h4 class="card-title" style="width: 100%;">Lagoon Contamination</h4>
+
         
          <p class="card-text content" style="width: 100%;">
+
            <img src="https://static.igem.org/mediawiki/2018/a/a5/T--Groningen--banner_modeling.png" class="responsive-img">
                Check if lagoons are vulnerable to contamination by microorganisms under given experimental conditions.</p><a href="https://2017.igem.org/Team:Heidelberg/Model/Lagoon_Contamination" class="card-button">Analytic Model</a><p></p>
+
<h1>Overview</h1>
         </div>
+
<p>
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
The IGEM team Groningen has invested a lot of effort into developing <u>sophisticated models</u> that simulates all parts of our project. In our quest for producing styrene from the polysaccharide cellulose, the first step is to get our enzymes to the place they need to go; cellulose. As the cellulose binding domain of our mini-cellulosome is responsible for this task, we characterized its cellulose binding properties by creating a <u>cutting edge</u> coarse grained molecular dynamics simulation and running it on our <b>6652 core supercomputer cluster</b> peregrine. The simulation shows the cellulose binding domain as an affinity for cellulose several <b>orders of magnitude higher</b> than the enzymes alone and draw novel insights from this. However by restraining the enzymes together in a scaffold protein, the added rigidity might prove detrimental to enzyme activity. We used an <u>advanced mathematical model</u> to work out the <b>complex system of differential equations</b> that describe this restrained situation, and compared the results to the solubilized enzymes. Luckily, the model shows that restraining the enzymes only impacts their performance negligibly. Finally, we once more harnessed the <b>supercomputing power</b> at our disposal to simulate our synthetic styrene production pathway in the metabolism of <i>S. cerevisiae</i> using a <u>flux based model</u>. We confirmed that yeast is indeed capable of simultaneous growth and high theoretical styrene production. Most strikingly however, we discovered several <b>important metabolic engineering targets</b>, some of which are corroborated by empirical evidence, while others are <b>entirely novel discoveries</b>. Overall all our models have provided us with <u>key insights</u> to aid us in reaching our goal: <b>a sustainable future</b>.
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Contamination" class="card-button">Interactive Webtool
+
</p>
                </a>
+
        </div>
+
      </div>
+
</div>
+
 
+
               
+
<div class="col-lg-4 col-md-4 col-xs-12">
+
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
 
+
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/a/ab/T--Heidelberg--2017_mutation_rate_estimation-logo.png" width="60%" alt="Card image cap">
+
        <div class="card-body">
+
          <h4 class="card-title" style="width: 100%;">Mutation Rate Estimation</h4>
+
          <p class="card-text content" style="width: 100%;">  
+
                Estimate the number of mutated sequences in a PREDCEL or PACE experiment at a given point in time to check for the covered sequence space and to save time and money when sequencing.</p><a href="https://2017.igem.org/Team:Heidelberg/Model/Mutation_Rate_Estimation" class="card-button">Analytic Model</a><p></p>
+
        </div>
+
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Mutation" class="card-button">Interactive Webtool
+
                </a>
+
        </div>
+
      </div>
+
</div>
+
 
+
               
+
<div class="col-lg-4 col-md-4 col-xs-12">
+
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
 
+
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/1/13/T--Heidelberg--2017_medium_consumption-logo.png" width="60%" alt="Card image cap">
+
        <div class="card-body">
+
          <h4 class="card-title" style="width: 100%;">Medium Consumption</h4>
+
          <p class="card-text content" style="width: 100%;">
+
                Calculate the amount of medium needed for a PACE experiment, see how medium consumption can be reduced when experimental parameters are optimized.</p><a href="https://2017.igem.org/Team:Heidelberg/Model/Medium_Consumption" class="card-button">Analytic Model</a><p></p>
+
        </div>
+
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
          <a href="https://2017.igem.org/Team:Heidelberg/Model/Medium" class="card-button">Interactive Webtool</a>
+
        </div>
+
      </div>
+
</div>
+
 
+
               
+
</section>
+
 
+
               
+
<div class="col-lg-4 col-md-4 col-xs-12">
+
    <div class="card" style="border-left: 10px solid; display: -webkit-flex; display: flex; -webkit-flex-wrap: wrap; flex-wrap: wrap; align-content: stretch; justify-content: center; align-items: flex-start; flex-direction: row;">
+
 
+
        <img class="card-img-top" src="https://static.igem.org/mediawiki/2017/3/38/T--Heidelberg--2017_GUS_PREPARATION_FRAGMENTS.svg" width="60%" alt="Card image cap">
+
        <div class="card-body">
+
          <h4 class="card-title" style="width: 100%;">Equilibration MD simulations</h4>
+
          <p class="card-text content" style="width: 100%;">
+
                To assert what effects our mutations entail on protein fold, we performed Molecular Dynamics simulations.</p>
+
        </div>
+
        <div style="align-self: flex-end; -webkit-align-self: flex-end; width: 100%;">
+
          <a href="https://2017.igem.org/Team:Heidelberg/Validation" class="card-button">Software Validation
+
                </a>
+
        </div>
+
      </div>
+
</div>
+
  
           
+
<div class="clear extra_space"></div>
       
+
<div class="line_divider"></div>
    </div>
+
<div class="clear_extra_space"></div>
  </div>
+
</div>
+
    </div>
+
  </div>
+
  
 +
<img src="https://static.igem.org/mediawiki/2018/f/f2/T--Groningen--TAPDATASSyesweretiredPARTTWO.png" width="98%">
  
 +
<div class="clear extra_space"></div>
 +
<div class="line_divider"></div>
 +
<div class="clear_extra_space"></div>
 +
<br>
 +
<div class="row_m" align="middle">
 +
  <div class="column_m col_box">
 +
  <a href="https://2018.igem.org/Team:Groningen/Model/Molecular_Dynamics">
 +
  <h5>Proximity by affinity</h5>
 +
  <img src="https://static.igem.org/mediawiki/2018/9/96/T--Groningen--MD_thumb.png">
 +
  </a>
 +
  <br>
 +
  <p style="text-align: justify; padding: 8%">Our cutting edge molecular dynamics simulation uses the in-house developed MARTINI coarse grained force field to effectively model the thermodynamic properties of a reductionist view of our system. </p>
 +
  </div>
 +
    <div class="column_m col_box">
 +
    <a href="https://2018.igem.org/Team:Groningen/Model/Mathematical_Modeling">
 +
    <h5>Cellulose degradation</h5>
 +
   
 +
    <img src="https://static.igem.org/mediawiki/2018/0/03/T--Groningen--math_thumb.png">
 +
    </a>
 +
    <p style="text-align: justify; padding: 8%">We were able to model the kinetic behaviour of a reduced enzyme scaffold. This system was described by a system of differential equations that describe the behaviour of the enzyme complex.</p>
 +
    </div>
 +
<div class="column_m col_box">
 +
<a href="https://2018.igem.org/Team:Groningen/Model/Flux_Based_Analysis">
 +
<h5>Optimizing styrene production</h5>
 +
<img src="https://static.igem.org/mediawiki/2018/4/4e/T--Groningen--fba_thumb.png">
 +
</a>
 +
<p style="text-align: justify; padding: 8%">By using flux based analysis, the complex network of reactions in the metabolism of <i>S. cerevisiae</i> could be modeled. We used this approach to simulate styrene production and to find metabolic engineering targets.</p>
 +
</div>
 +
</div>
  
  
 +
<!--
 
     <p>Our integrated styrene production pathway in Saccharomyces cerevisiae relies on several key properties to make the process the most efficient in ideal conditions. Our enzyme scaffold which supposedly enhances enzyme activity by bringing the enzymes in closer proximity to each other, and closer to cellulose by a cellulose binding domain. Furthermore our yeast strain needs several metabolic optimizations to maximize styrene production levels. </p>
 
     <p>Our integrated styrene production pathway in Saccharomyces cerevisiae relies on several key properties to make the process the most efficient in ideal conditions. Our enzyme scaffold which supposedly enhances enzyme activity by bringing the enzymes in closer proximity to each other, and closer to cellulose by a cellulose binding domain. Furthermore our yeast strain needs several metabolic optimizations to maximize styrene production levels. </p>
  
     <p>To verify whether an enzyme scaffold indeed enhances enzyme activity, a <a href="https://2018.igem.org/Team:Groningen/Model/Stochastic_Modeling">mathematical  model</a> was created to describe catalyzed degradation of cellulose in the presence of our enzymes. The model, based on work by Levine et al. [1], includes an exoglucanase and an endoglucanase, both in bound together and separately in solution.  
+
     <p>To verify whether an enzyme scaffold indeed enhances enzyme activity, a <a href="https://2018.igem.org/Team:Groningen/Model/Mathematical_Modeling">mathematical  model</a> was created to describe catalyzed degradation of cellulose in the presence of our enzymes. The model, based on work by Levine et al. [1], includes an exoglucanase and an endoglucanase, both in bound together and separately in solution.  
 
   The model provides a justification for the use of scaffolding and insight into how to choose enzymes for a scaffold</p>
 
   The model provides a justification for the use of scaffolding and insight into how to choose enzymes for a scaffold</p>
  
Line 237: Line 119:
 
     <p>To speed up simulations, our models were run using the Groningen University’s state of the art 4000+ core Peregrine cluster.</p>
 
     <p>To speed up simulations, our models were run using the Groningen University’s state of the art 4000+ core Peregrine cluster.</p>
  
<div id="references" class="section card">
 
        <div class="card-content">
 
            <span class="card-title">References:</span>
 
            <ol>
 
<li><a href="http://science.sciencemag.org/content/early/2016/06/01/science.aaf5573" target="_blank">Abudayyeh, O.O., et al., 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. doi: 10.1126/science.aaf5573.</a></li>
 
            </ol>
 
        </div>
 
</div>
 
  
 
<h4>References</h4>
 
<h4>References</h4>
Line 258: Line 132:
  
 
     <p>[6] Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., … Fleming, R. M. T. (2017). Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. ArXiv. <a href="https://doi.org/10.1038/protex.2011.234" target="_blank">https://doi.org/10.1038/protex.2011.234</a></p>
 
     <p>[6] Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., … Fleming, R. M. T. (2017). Creation and analysis of biochemical constraint-based models: the COBRA Toolbox v3.0. ArXiv. <a href="https://doi.org/10.1038/protex.2011.234" target="_blank">https://doi.org/10.1038/protex.2011.234</a></p>
      
+
     -->
 
         </div>
 
         </div>
 
<div class="clear"></div>
 
<div class="clear"></div>

Latest revision as of 18:30, 7 December 2018

Overview

The IGEM team Groningen has invested a lot of effort into developing sophisticated models that simulates all parts of our project. In our quest for producing styrene from the polysaccharide cellulose, the first step is to get our enzymes to the place they need to go; cellulose. As the cellulose binding domain of our mini-cellulosome is responsible for this task, we characterized its cellulose binding properties by creating a cutting edge coarse grained molecular dynamics simulation and running it on our 6652 core supercomputer cluster peregrine. The simulation shows the cellulose binding domain as an affinity for cellulose several orders of magnitude higher than the enzymes alone and draw novel insights from this. However by restraining the enzymes together in a scaffold protein, the added rigidity might prove detrimental to enzyme activity. We used an advanced mathematical model to work out the complex system of differential equations that describe this restrained situation, and compared the results to the solubilized enzymes. Luckily, the model shows that restraining the enzymes only impacts their performance negligibly. Finally, we once more harnessed the supercomputing power at our disposal to simulate our synthetic styrene production pathway in the metabolism of S. cerevisiae using a flux based model. We confirmed that yeast is indeed capable of simultaneous growth and high theoretical styrene production. Most strikingly however, we discovered several important metabolic engineering targets, some of which are corroborated by empirical evidence, while others are entirely novel discoveries. Overall all our models have provided us with key insights to aid us in reaching our goal: a sustainable future.


Proximity by affinity

Our cutting edge molecular dynamics simulation uses the in-house developed MARTINI coarse grained force field to effectively model the thermodynamic properties of a reductionist view of our system.

Cellulose degradation

We were able to model the kinetic behaviour of a reduced enzyme scaffold. This system was described by a system of differential equations that describe the behaviour of the enzyme complex.

Optimizing styrene production

By using flux based analysis, the complex network of reactions in the metabolism of S. cerevisiae could be modeled. We used this approach to simulate styrene production and to find metabolic engineering targets.